国産無垢材による2方向ラーメン構法の開発

細井 泰行* 竹内 博幸*

要 旨

木材のヤング係数は鋼材の1/20程度であり、筋交いなどがない木造のラーメン構造では、特に地震時の変形 を許容値以下に抑えるのが課題となる。そこで、本構法では変形を少なくするために剛性の高い柱梁接合部と柱 脚を開発した。なお、木材には高価な集成材ではなく、地域的に余剰状態になっている無垢材を使用し、木材の 利用促進に貢献する。それぞれの接合部の剛性を高くするために、柱梁接合部は、木材と接合金物のラグスクリ ユーとの隙間にエポキシ樹脂を充填し、接合金物には初期軸力を導入している。

筋交いなどが不要なため、開放的な空間を計画でき、設計自由度の高い木造建築を実現できる。

1. はじめに

木構造に関する昭和 55 年建設省告示第 1792 号表中の (ろ)「剛節架構」の解説には、「接合部が完全に剛な条件と なることを期待しているものではなく、部材に作用する曲げモ ーメントに接合部で抵抗する架構の意味で・・・」と記されてい る。これは、接合した部材と部材の間に生じる隙間(ガタ)の 影響など、鉄骨造や鉄筋コンクリート造にはない木構造特有 の問題により、剛な接合部を実現することが難しいことを示し ている。

したがって、木造ラーメン構造の設計では、地震時の変形 量を許容値以下とすることが課題であり、筋交いなどの耐震 要素により地震力に抵抗し、変形量を低減することがほとん どである。

一方、集成材を用いたラーメン構造では、部材断面を大き くすることにより部材接合部の部材間の隙間の影響を小さくし ている。また、木材を貼り合わせた方向によって、耐力が異な るため、基本的に部材が曲げ応力を受ける向きを予め定め た一方向ラーメンが対象である。

そこで、本構法では、国産無垢材のような小断面の無垢材 においても、高い剛性の木造ラーメン構法を実現するために、 柱梁接合部の金物にプレストレスを導入した柱梁接合部を考 案し、評価式を提案する。そして、柱梁接合部の実大実験を 行い、評価式の妥当性を確認する。

なお、無垢材は、集成材のように耐力が著しく低い方向が ないため、柱への2方向からの応力を想定したラーメン構法 を実現できる。

2. 柱梁接合部の構成

剛性の高い柱梁接合部を実現するための、柱梁接合部の 構成を図-1に示す。柱梁接合部の左右の梁端は、ラグスク リューが埋め込まれており、ラグスクリューと木材の間にはエ ポキシ樹脂系の接着剤が充填されている。

図-1 柱梁接合部の構成

接着剤を充填したラグスクリューは、文献¹⁾により引張耐力 が確認されており、接着剤を併用することにより、ラグスクリュ ーの引抜耐力が向上し、柱梁接合部の耐力を高めることが できる。図-2に木材側の破壊ではなく、ラグスクリューの破 断で引張耐力が決まった試験体と、樹脂の充填状況を示す。

図-2 ラグスクリューの破断と樹脂の充填状況

図-1に示すとおり、左側の梁端部の木材は、マジックカ プラーを締め込むために切り欠き部が設けられている。以下、 切り欠き部がない側を「梁A端」、切り欠き部がある側を「梁B 端」と呼ぶ。

ラグスクリューの梁端部への埋め込みや、梁受け金物の柱 への取り付けは工場で行われ、取り付けられた状態で現場に 搬入される。一方、連結カプラー、連結ボルト、マジックカプラ ー、支圧板、梁受け金物を固定するドリフトピンなどは、現場 で施工される。

ラグスクリューの頭は雄ネジになっており、梁 B 端はマジッ クカプラー、梁 A 端は連結カプラーと接合する。

連結カプラーは、柱を貫通し、左右の梁を連結する。さら に、支圧板を固定する梁B端側のナットを締め付けることによ り、ラグスクリューAと連結カプラーにプレストレスを導入する。 プレストレスの導入は、ラグスクリューの長期許容耐力の 50% を標準とし、後述の設計式によりラグスクリューなどの耐力を 確認する。プレストレスを導入することにより、柱梁接合部の 剛性を高めることができる。なお、連結カプラーと柱木材の間 には接着剤は充填しない。

マジックカプラーの両側の雌ネジはピッチが異なり、マジッ クカプラーを回転させることによって、梁と柱を引き寄せたり、 離間させたりすることができる。マジックカプラーによって、B 端側の梁と柱の距離を調整する。

梁のせん断力は、梁受け金物によって応力を伝達し、梁 端部の曲げモーメントによって生じる引張力はラグスクリュー によって応力を伝達する。また、曲げモーメントによって生じ る圧縮力は、梁 A 端では、梁の木材の小口により伝達し、梁 端 B では、柱と接する支圧板によって応力を伝達する。

3. 柱梁接合部の接合部力学モデルの提案

柱梁接合部への外力を想定するために、2方向ラーメン構 法の適用を想定した建築物の試設計を行った。図-3に地 震時の梁の曲げモーメント分布を示す。なお、試設計の地震 時の作用荷重は、建築基準法施行令 88 条に基づき常時荷 重と地震力を求めた。

図-3 地震時の梁の曲げモーメント分布

本システムのように、プレストレスを導入する場合、柱両側 の応力の相互作用の影響を考慮する必要がある。解析例に おいて、地震時の応力は長期荷重の影響で、地震時の柱両 端の梁の曲げモーメントの大きさが異なり、中柱では曲げモ ーメントの絶対値の比率が2.5:1程度となっている。構造実 験や耐力算定式の検証においては、応力のバラつきなどを 考慮し、3:1の場合を想定して検証を行う。なお、梁スパンの 影響などにより、曲げモーメントの仮定が著しく異なる場合に は別途検証を行う必要がある。

次に、初期張力が導入された接合部に曲げモーメントが作 用した場合の接合部力学モデルを図ー4に示す。提案する 評価式は、この仮定をもとに梁端部の曲げ応力が、ラグスクリ ユーと柱面に伝達するものとする。

長期応力、地震力などによって生じる梁端部の曲げモーメントにより、梁 B 端(左側)では、梁上側のラグスクリューに引 張側の外力(T')が働き、梁下側には支圧板を介して柱面に 圧縮側の外力(C)が働いている。また、梁 A 端(右側)では、張 り下側に引張力(T)、梁上側に三角形分布の圧縮力(C')が生 じ、梁端部の小口から柱面に圧縮応力が働いている。

なお、左右の梁の柱面への圧縮応力に対する変形に関し ては、柱側に梁 B 端の支圧板と面積が同じで、深さが柱成 (D)の 1/3 の範囲に圧縮域があると仮定し、この圧縮域の柱 木材が変形するものとする。また、この圧縮域の深さ(D/3)を 有効支圧幅とする。

図-4 接合部の力学モデル

次に、梁端部の曲げモーメントによって生じる作用外力と、 ラグスクリューの軸力及び柱面への応力の関係を図-5に示 す。

図-5の縦軸は、梁端曲げモーメントによって生じるラグス クリュー及び柱面への作用外力を示す。また、青線は柱面へ の応力と曲げモーメントによって生じる作用外力の関係を示 し、赤線はラグスクリューの張力と作用外力の関係を示す。

作用外力がない場合は、ラグスクリューには初期張力(T_0)、 柱面には、支圧板を介して柱面に初期応力($-T_0$)が生じている。

例えば、図ー4において、梁 B 端側だけに曲げモーメント が生じている($M_{\downarrow }=0$)場合、梁 B 端(左)の上側では、ラグ スクリューへの引張外力の増加に伴い、柱面への応力は減 少し、ラグスクリューの張力は増加する。この時、作用外力は、 ラグスクリューと柱の剛性の割合に応じて、応力が分配される。

そして、ラグスクリューの軸力が図-5に示すT₁になり、柱面への応力がゼロになると、梁端部で離間し、それ以降、ラグスクリューの張力はラグスクリューへの作用外力と等しくなる。

一方、梁 B 端(左)の下側では、柱への圧縮側の作用外力 の増加に伴い、柱面への応力は負側(圧縮側)に増大し、ラ グスクリューの軸力は減少する。なお、ラグスクリューの締付 け力が消失した後は、梁 A 端側で離間し、ラグスクリューの負 担軸力はゼロとなる。また、ラグスクリューの負担軸力がゼロ になるため、柱左面への作用外力と柱面への応力は等しくな る。

しかし、実際には十字形接合部では、接合部の左右に曲 げモーメントが働き、その比率が 3:1 となるため、柱梁接合部 に働く作用外力も左右で 3:1 となる。

図-6は、実際の設計で想定される断面に外力を与え、上 側のラグスクリューの残存軸力(T_R)を図示したものである。柱 寸法は 210×210、ラグスクリューは M16 である。また、ラグス クリューの初期張力は、ラグスクリューの長期許容耐力の 50%(17.72kN)とする。

梁 B 端側のラグスクリューへの地震時の作用外力として、 長期許容耐力相当の外力(35.4kN)を加え、梁 A 端側には、 35.4 / 3 = 11.8kN の作用外力が加わるものとする。また、縦 軸の作用外力は柱材とラグスクリューの剛性に応じて、それ ぞれに分配されるため、柱面への応力に相当する外力分だ け傾きが大きくなり、θ = 40.6°となる。

この時、梁 B 端の上側の作用外力(引張)によりラグスクリ ユーに生じる変動軸力をΔT₀、右側の作用外力(圧縮)により ラグスクリューに生じる変動軸力をΔT₀'とすると、ラグスクリュ ーの残存張力 T_R は、(1)式で表され、 T_R が 0 以上、 T_1 以下範囲では、締付け力が維持される。

$$T_R = T_0 + \Delta T_0 - \Delta T_0' \tag{1}$$

設定した断面、荷重条件のもとでは、上側のラグスクリュー において、柱の左右での離間は見られず、締付け力を維持 できることがわかる。

図-7 下側ラグスクリューの残存軸力

一方、下側のラグスクリューの残存張力(T_R)について、図 -7に示す。なお、梁 B 端の作用外力(圧縮)によりラグスクリ ューに生じる変動軸力を ΔT_0 、梁 A 端の作用外力(引張)によ りラグスクリューに生じる変動軸力を ΔT_0 'とすると、下側のラグ スクリューの残存張力(T_R)は(2)式で表される。

 $T_R = T_0 - \Delta T_0 + \Delta T_0'$

なお、ラグスクリューの初期張力は上側と同じ(17.72kN)で あるが、ラグスクリューの変動軸力は $35.4 \times 0.876 = 31.0$ kNの 時に $T_R = 0$ となり、長期許容耐力相当の軸力の約 90%の軸力 でラグスクリューの締付け力が消失する。

下側では、上側に比べ低い荷重から締付け力を消失する ため、左右曲げモーメントの相互作用の影響が大きくなる。

4. 接合部耐力式の提案

接合部に作用する曲げモーメントに対して、引張側がラグ スクリューにより、圧縮側が支圧板及び梁小口の柱支圧力に より抵抗する。初めに、曲げモーメントにより作用する引張力 を検討する。十字形接合部で梁 B 端の上側では、ラグスクリ ューの引張力T'と下側の支圧板の圧縮力Cはつり合いの関 係にあるため、(3)式が成立する。

$T' = M_{\pm} / h (= C)$	(3)
h:ラグスクリュー間距離	

梁 A 端では、文献²⁰の鉄筋コンクリート梁の曲げに対する 断面算定方法を準用し、鉄筋をラグスクリュー、コンクリートを 木材と読み替えるものとする。なお、梁の断面算定の矩形梁 面のうち、圧縮側のラグスクリューを無視して複筋比を0、ヤン グ係数比を29.3 (鋼材 205kN/mm²とスギ甲種 2 級 7kN/mm² の比)として中立軸位置 x_n 及び縁応力 $\Delta_R \sigma_C c$ 算定する。圧 縮力と引張力のモーメントのつり合いにより梁 A 端の下側の ラグスクリューの引張力Tと梁 A 端の上側の圧縮力C'は、(4) 式より導かれる。

 $T = \Delta_R \sigma_C \cdot (x_n / 2) \cdot W_g \quad (= C') \tag{4}$ $W_g : 梁幅$

ラグスクリューは上下ともに2本ずつ挿入され、引張抵抗す るため、ラグスクリュー1本に作用する引張力は(5)式により検 定される。

$max(T'/2,T/2) \leq {}_{S}T_{L}$	(5)
sT _L :ラグスクリューの許容引張耐力	

次に、梁端の曲げモーメントにより柱面に作用する圧縮力 を検討する。梁 B 端では、支圧板による柱の繊維直交方向 のめり込み耐力が検定項目となる。なお、安全側の検討とし て、締付け力の消失を前提としているため、例えば下側の支 圧板には、梁 B 端側からの作用外力Cだけではなく、梁 A 端 側からラグスクリューに作用する引張力Tがカプラーを介して 付加される。したがって、支圧板に作用する支圧応力度 _Lσ_c は、(6)式で検定される。

 $L\sigma_c = (C + T) / A_B \le \sigma_b$ (6) $A_B: 支圧板面積, \sigma_b: 許容めり込み応力度$

ー方、梁A端側では、圧縮応力度が最も大きくなる圧縮縁 での柱の繊維直交方向のめり込みが検定項目となる。圧縮 縁でのめり込み応力度 $_{R}\sigma_{c}$ も同様に梁B端側からカプラーを 介してラグスクリューに作用する引張力T'を考慮する必要が ある。引張力T'により生じる梁A端の圧縮力は梁A端の中立 軸から圧縮縁までの分布荷重として作用することが考えられ るが、ここでは梁B端側の支圧板と等価の支圧面を仮定し、 その支圧面に等分布荷重として作用するものとする。したが って、梁A端の圧縮縁応力度($\Delta_{R}\sigma_{c}$)は(7)式により検定され る。

 $_R\sigma_c = \Delta_R\sigma_c + T'/A_B \le \sigma_b \tag{7}$

5. 変形予測の検討式の提案

柱梁接合部に接続する左右梁における、部材中央部の反 曲点位置の鉛直変位(δ)は、(8)式により求められる。

 $\delta = \delta_{Frame} + \delta_P + \delta_B$ (8) δ_{Frame} :柱梁接合部を剛接合とした場合の変位 δ_P :パネルゾーンのせん断変形による変位 δ_B :梁端部小口の柱へのめり込みによる変位

柱梁接合部を剛接合とした場合の変位 δ_{Frame} については、 フレーム解析ソフトを用いて求められる。

パネルゾーンのせん断変形による変位 δ_p については、まず、柱梁接合部のせん断力Qを(9)式により算出する。また、 柱梁接合部のせん断応力度 τ 、せん断変形角 γ は(10)、 (11)式により算出する。

$Q = (M_{\pm} + M_{\pm})/H$	(9)
$\tau = Q/(D_C \cdot W_C)$	(10)
$\gamma = \tau/G$	(11)
$D_c: 柱成、 W_c: 柱幅、 G: せん断$	弹性係数 $(E_0/15)$ 、 H :梁成

なお、柱梁接合部のせん断変形による梁反曲点の変位δ_Pは、(12)式により算出される。

 $\delta_P = \gamma \cdot L$ (12) L:柱梁接合部の軸芯から梁の反曲点までの長さ

梁端部小口の柱へのめり込みによる変位 δ_B については、 (6)、(7)式により算出した圧縮応力度をもとに算出する。なお、 めり込み量 $\Delta_L B$ 、 $\Delta_R B$ の算出では、柱の全断面がめり込みの 影響を受けるのではなく、実験結果と計算結果との比較によ り、めり込みに寄与する有効支圧幅を柱成Dの 1/3 であると 仮定する。また、支圧板がない梁 A 端においても、安全側の 検討として、梁 B 端と同じ支圧板があると想定し、左右同じ有 効深さであると仮定する。

左右のめり込み量 $\Delta_L B$ 、 $\Delta_R B$ は以下の(13)、(14)式となる。 $\Delta_L B = L \sigma_c \cdot (D/x)/(E_0/25)$ (13) $\Delta_R B = R \sigma_c \cdot (D/x)/(E_0/25)$ (14) E_0 :木材の繊維方向のヤング係数(繊維直行方向のヤン

グ係数は $E_0/25$)、1/x:有効支圧幅(D/x)算定用係数(=1/3)

従って、梁 B 端側の梁の反曲点位置での変位は(15)式、 梁 A 端側の変位は(16)式となる。

$_L\delta_B = 2\cdot\Delta _LB\cdot L/h$	(15)
$_R\delta_B = 2\cdot\Delta_RB\cdot L/h$	(16)

以上より、梁反曲点での変位 δ は、骨組み解析ソフトにより 接合部が剛であるとして求めた左右反曲点位置の鉛直方向 変位をそれぞれ、 $_L\delta_{Frame}$ 、 $_R\delta_{Frame}$ とすると、(17)、(18)式に より算出される。

$_L\delta =$	$_L\delta_{Frame} + \delta_P +$	$_L\delta_B$	(17)
$_{R}\delta =$	$_{R}\delta_{Frame} + \delta_{P} +$	$_{R}\delta_{B}$	(18)

また、柱梁接合部における梁の回転角は(19)式で算出される。

$$\theta = (\delta_P + \delta_B)/L \tag{19}$$

6. 柱梁接合部の実験

柱梁接合部の耐力、変形等評価式の妥当性を検証するた めに、以下に示す実大要素実験を行った。

(1) 試験体概要

試験体(X-1)の試験体形状を図-8に、十字形試験体(X-1)の試験とトの字形試験体(T-1)の試験体写真を図-9、試験体一覧を表-1に示す。

主なパラメーターは柱の形状、部材寸法である。柱の両側 に梁がある場合と片側のみの場合について検証を行い、部 材寸法の影響を確認する。

表-1 試験体一覧

試験体	形状	部材寸	ラグスク リュー間 距離	支圧板 寸法	
		柱:ヒノキ	h (mm)	(mm)	
T-1	トの字形	210x210/H:2000	330x150/L:1800	226	70x150x9
T-2	NUT IN	250x250/H:2000	400x180/L:1800	296	70x180x9
X-1	十字形	210x210/H:2000	330x150/L:1800	226	70x150x9

柱にはヒノキ甲種2級、梁にはスギ甲種2級を用い、木材 のヤング係数を表-2に示す。

- 表一2 木材のヤンク係数(N/mm ⁻	表-2	木材のヤング係数(N/mm ²)
----------------------------------	-----	------------------------------

++++	試験体			
1/17	X−1	T-1	T-2	
ヒノキ	8.59	8.59	8.24	
スギ	6.63	6.68	6.15	

また、M16のラグスクリューを上下2本ずつ使用する。なお、 トの字形試験体 T-2は、T-1やX-1よりも柱、梁断面が大きい。なお、表-1の柱部材寸法Hは、柱上下のピン支持間距 離であり、梁部材寸法Lは、柱の材軸から、梁の加力位置ま での距離を示す。

(a) 十字形試験体(X-1) (b) トの字形試験体(T-1) 図-9 試験体

(2) 載荷概要

載荷概要を図-10に示す。加力は油圧ジャッキ(最大荷 重100kN、ストローク300mm)で行った。油圧ジャッキの先の ロードセル(最大計測荷重 30kN)により梁のせん断力を計測 した。また、変位計により梁の両端部の鉛直方向変位を計測 した。

加力サイクルを図-11に示す。梁のせん断力は、左右と もに下向きを正加力、上向きを負加力とし、負加力時のせん 断力は、正加力時の1/3である。

図-11 加力サイクル

また、左側のせん断力が正加力の時には、右側のせん断 力は負加力となるように、左右で鉛直逆向きのせん断力が生 じるように載荷する。

荷重レベルは設計用耐力算定式にもとづき、接合部耐力 である短期許容荷重を基準として、長期許容荷重、短期許容 荷重でそれぞれ3回正負交番繰返し荷重を与えたあと、短期 許容荷重と材料強度荷重の平均及び材料強度荷重で1回 ずつ繰返し、その後、崩壊形式が確認できる変形まで、変形 制御により載荷を行った。

図-10 載荷概要

(3) 実験結果

X-1 の左側梁の加力点におけるせん断力(P) – 変位(δ)関係を図-12に示す。実験値の降伏荷重 P_y は実験値より定めた初期剛性 K_0 と二次勾配の交点から算定している。また、最大荷重の実験値は P_{max} である。

一方、耐力評価式による計算値は、ラグスクリューの引張 耐力によって決まるせん断耐力 $_tQ_y$ 、梁A端側(試験体左側) の支圧耐力によって決まるせん断耐力を $_{c1}Q_y$ 、梁B端側(試 験体右側)の柱の支圧耐力によって決まるせん断耐力を $_{c2}Q_y$ とする。

なお、正加力時と負加力時の見かけの剛性が異なるのは、 計測位置の他端のせん断力の影響である。正加力時は計測 位置のせん断力Pに対応する他端のせん断力がP/3である のに対して、負加力時は計測位置のせん断力P/3に対応す る他端のせん断力はPである。せん断力(P)-変位(δ)関係は、 計測位置のせん断力を示しており、他端のせん断力は含ま れていない。したがって、試験体の正負の剛性は同じであっ ても、他端の荷重の影響により、見かけの剛性が変化する。

X-1の右側梁の加力点におけるせん断力-変形関係を図 -13に示す。同様に、計測位置において正加力時の方が、 負加力時のときよりも見かけの剛性が大きくなっている。

最終サイクルは、左側正加力、右側負加力であり、左側は 鉛直下向きに 100mm、右側は鉛直上向きに 90mm 程度まで 変形を生じているが、急激な耐力低下は見られない。

トの字形試験体の左側梁の加力点におけるせん断力-変 位関係を図-14に示す。T-1においては、加力装置の不具 合により、20mmを超えた大変形時に一時的なせん断力の低 下が見られるが、T-1, T-2のいずれの試験体も 60mm を超 える大変形時まで、急激な耐力低下は見られない。

X-1 の最大耐力時の変形状況を図-15に示す。いずれ の試験体も、ラグスクリューの材料強度時荷重(計算値)まで 弾性状態を保っているが、その後、柱面のめり込み耐力の計 算値を超えた頃から、梁端小口の柱面へのめり込みが観察 され、それに伴い左右の梁で剛性の低下が見られた。しかし、 剛性低下後もせん断力は増加し、大変形時においても、急 激な耐力低下は見られない。

図-15 最大耐力時の変形状況(X-1)

		実験値		計算値(kN)					
					引張側	圧約	宿側	P _y /	有効支圧幅
司马安14		最大荷重	降伏荷重	初期剛性	ラグスクリュー	梁B端	梁A端	計算値 min	(D/x)
		$P_{max}(kN)$	P _y (kN)	K ₀ (N/mm)	$_{t}Q_{y}$	$_{C1}Q_{y}$	$_{C2}Q_{y}$		
T-1		14.35	10.39	455.53	7.34	11.02	9.87	1.42	D/8.43
T-2		18.77	13.57	763.92	10.74	17.32	11.85	1.26	D/6.81
X-1梁B端	正	13.72	8.57	318.05		8.20	-	1.17	D/5.93
(左側)	負	-	-	115.21	7.24	8.88	-	1	D/5.27
X-1梁A端	ТĒ	-	-	346.14	7.34	-	8.88	-	D/7.18
(右側)	負	_	_	121.93		_	7.7	_	D/5.84

表-3 実験値と計算値の比較

なお、X-1 は梁部材変形角 1/60 で剛性の低下が見られ、 最大荷重時の梁部材変形角は 1/18 である。また、除荷後の 残留変形は約 1/90 であり、高い靭性と復元力特性が確認さ れた。

降伏耐力及び最大耐力については、いずれも梁端部のめ り込みによって決まり、梁 B 端の切欠き部のラグスクリューや 柱、梁部材には目視による変化は見られなかった。

除荷後に、柱上縁部の柱表面に繊維直行方向のめり込み を確認できた。

(4) 実験値と計算値の比較

実験値と計算値の比較を表-3に示す。

なお、各せん断耐力は(3)~(7)式より、ラグスクリューの引 張耐力、柱の支圧耐力時の梁端部の曲げモーメントを求め、 曲げモーメントを柱心から加力位置までの距離で除し、せん 断耐力とする。

計算値の最小値に対する実験値(P_y)は 1.17~1.41 となり、 安全側の評価を行うことができた。

いずれの試験体もラグスクリューの引張耐力の計算値 (_tQ_y)が最小降伏耐力となっているが、実際にはラグスクリュ ーの引張耐力の実験値は、計算値に対して十分に高い強度 を有しており、結果として小口のめり込み降伏が先行した。

柱梁接合部を剛接合とした場合の変位(δ_{Frame})、パネルゾ ーンのせん断変形による変位(δ_p)、梁端部小口の柱へのめり 込みによる変位(δ_p)を足し合わせた変形予測式(8)式を元に、 (15)、(16)式に実験結果の変形量を代入し、(13)~(16)式から、 有効支圧幅(D/x)を逆算した結果を**表**-3に示す。有効支圧 幅は、 $D/5.27 \sim D/8.43$ となり、設計ではD/3を採用すること により、柱梁接合部の剛性を低く評価することが確認され、安 全側の評価となる。なお、梁 A 端側の有効支圧幅の計算値 は梁 B 端よりも、やや小さくなる傾向が見られるが、これは、 接合部の力学モデル($\mathbf{20}$ -4)において、梁 B 端の支圧板と 等価な圧縮面と仮定したことによるものと考えられる。

7. まとめ

国産無垢材を用いたラーメン構法における柱梁接合部の 耐力、変形評価式を提案し、柱梁接合部の実大実験の結果 を報告した。本実験で得られた知見は以下の通りである。

- (1) 柱梁接合部のラグスクリューにプレストレスを導入することにより、初期ガタのない剛な柱梁接合部を実現することができた。
- (2) 柱梁接合部の実大実験では、柱面へのめり込みにより柱 梁接合部の剛性低下や最大耐力が決まった。ラグスクリ ューの埋込み部の抜け出しや部材の損傷は確認されな かった。また、4 章で提案する耐力評価式により、実験値 を安全側に評価することができた。
- (3)5章で提案する変形評価式において、実験結果から求めた有効支圧幅はD/5.27~D/8.43となり、設計ではD/3を採用することにより安全側に評価できることが確認できた。

なお、本研究は、(株)森林経済工学研究所、(株)奥村組 とともに開発を行い、平成 30 年 12 月に一般財団法人日本 建築総合試験所にて建築技術性能証明(GBRC 性能証明 第 18-26)を取得している。

【参考文献】

- 今井克彦他:木造スペースフレーム接合部のラグスクリュー引抜き性能に関する研究,日本建築学会技術報告 集第28巻,第48号,2015.6.
- 日本建築学会:鉄筋コンクリート構造計算規準・同解説 2018.
- 今井克彦他:国産無垢材による2方向ラーメン構法の開発 その1~7,日本建築学会大会学術講演梗概集(北陸),2019.9.