東京都新海面処分場Cブロックにおける 粘土の減容化施工

小野 正揮1・新舎 博2・中川 大輔3・丸岡 弘晃4・堤 彩人5

¹東京都港湾局 東京港建設事務所 (〒135-0064 東京都江東区青海2-43青海フロンティアビル19F) E-mail: Masaki.Ono@member.metro.tokyo.jp

²正会員 五洋建設(株) 技術研究所 (〒329-2746 栃木県那須塩原市四区町1534の1) E-mail: Hiroshi.Shinsha@mail.penta-ocean.co.jp

³五洋建設(株) 東京土木支店 (〒136-0082 東京都江東区新木場2-3-1) E-mail: Daisuke.Nakagawa@mail.penta-ocean.co.jp

⁴五洋建設(株) 東京土木支店(〒136-0082 東京都江東区新木場2-3-1) E-mail: Hiroaki.Maruoka@mail.penta-ocean.co.jp

⁵正会員 五洋建設(株) 技術研究所 (〒329-2746 栃木県那須塩原市四区町1534の1) E-mail: Ayato.Tsutsumi@mail.penta-ocean.co.jp

東京都新海面処分場は東京港内の最後の廃棄物処分場であり、できるだけ長く利用することが求められ ている.そこで、Cブロックにおいて、粘土の減容化施工を実施した.施工は幅150 mm×厚さ3.9 mmの PBDを1.8 m間隔の正方形配置で、平均A.P.+1.5 m~-33.8 mまで水上から打設し、-65 kN/m²の負圧を310日 間継続して作用させるものである.工事は2005年度の試験施工から始め、本施工は2007年度~2015年度ま で実施した.施工面積は38.3万m²であり、平均沈下量は5.13 m、総沈下容積は216.7万m³である(2015年4 月の推定値).この沈下容積は東京都の浚渫土埋立処分計画量の約2.3年分に相当する.本文は地盤工学 の観点から、減容化施工とその効果について、総合的にまとめたものである.

Key Words : bulk compression, vacuum consolidation, prefabricated vertical drain, clayey soil, execution

1. はじめに

東京における住民の快適な生活や都市機能の維持発展 のため、前面海域の東京港内において、廃棄物などを処 分する埋立処分場が確保されてきた.現在、東京港内最 後の処分場として新海面処分場¹⁰の整備が進められてお り、できるだけ長く処分場として使用することが強く求 められている.

新海面処分場は 7 ブロックに分割されて, 順次, 整 備・供用されており, 都内 23 区から発生する家庭ごみ などの廃棄物などとともに, 都内の河川や東京港から発 生する浚渫土が埋立処分されている. 新海面処分場で受 け入れている浚渫土は, 河川や運河, 港湾等の水深を維 持するために発生した浚渫土をはじめとした有効利用で きないものに限られているが, 埋立処分できる容量には 限界があり, 廃棄物などと同様, 延命化のための取り組 みが重要となっている. こうした背景の中で、新海面処分場の C ブロック (図-1 参照)において、粘土地盤を真空圧密によって 沈下させるという減容化施工を実施した.真空圧密は粘 土層の上部に盛土などの荷重を載荷しないで、粘土層を 大きく沈下させて容量を増大させることができるため、 沈下後に沈下量に相当する浚渫土量を引き続き埋立処分 できるという利点がある.工法の選定に際しては、減容 化が水面下での施工であることから、気密シートを用い ないで、表層の粘土層を遮水シール層として利用するキ ャップ式真空圧密工法³を採用した.

減容化施工は、図-2 に示す範囲において、2005 年度 の試験施工から始め、2007 年度から本格的な工事を開 始し、2015 年度で終了する計画である. この期間にお いて、38.3 万 m²の施工を実施し、平均沈下量は5.13 m, 圧密沈下によって得られた容積は216.7 万 m³である(数 字は2015年4月の推定値である).

このような粘土の減容化施工は国内初の大型事業であ

図-2 Cブロック内での減容化施工区域

り、本事業で得られた知見は地盤工学的に見ても大変有 意義であると考えられる.そこで、本文では本事業にお いて得られた粘土の減容化施工に関する要点を総合的に 取りまとめることにした.減容化の施工範囲の決定に際 しては、護岸に有害な変形を与えないように改良範囲を 護岸から 50~100 mの内側とし、かつ将来廃棄物を埋立 処分した際に汚水が外部へ浸出しないようにドレーンの 下端深度を在来粘土層下端から 3 m上部とするなど、環 境面に配慮した.減容化の対象とした粘土層は在来粘土 層とその上部の浚渫土層であり、幅 150 mm×厚さ 3.9 mmのドレーン材を 1.8 m間隔の正方形配置で 118,546本, 平均 A.P.+1.5 m~-33.8 m (以下、A.P.は省略)の深度まで 水上から打設し、負圧を 310 日間継続して作用させた.

本文では、2章で減容化施工の留意事項、3章で施工、 4章で地盤特性、5章で圧密管理、6章で減容化効果について述べる.

2. 工法選定と施工範囲の検討

Cブロックの埋立想定断面を図-3に示す.Cブロック は外周護岸と中仕切り護岸で仕切られ、浚渫土などで埋 め立てて陸化した後、廃棄物などを埋立処分する管理型 処分場³であり、+4.5mまで浚渫土を埋立処分し、更に

+30 mまで廃棄物と建設発生土を互層で埋立処分する計 画である.

減容化工法の選定にあたっては,護岸に有害な変形を 与えないとともに,管理型処分場の遮水層となる海底地 盤(粘土層)の遮水機能を確保し,廃棄物による汚染が 地下水や海域に浸透しない構造にすることが不可欠であ った.以下に,減容化工法の選定と施工範囲について記 述する.

(1) 減容化工法の選定

減容化工法の選定フローを図4 に示す.減容化の目 的は海底地盤(粘土)の圧密沈下を促進し,主に浚渫土 の受入容積を増大させることで新海面処分場の延命化を 図ることである.そのため,盛土により圧密荷重を載荷 する工法は,圧密後に浚渫土などの埋立処分のために盛 土を撤去する必要があることから,経済性や工期などの 観点から採用せず,負圧を作用させる真空圧密工法を採 用した.また,真空圧密工法としては,水面下での施工 が可能であるキャップ付プラスチックボードドレーン (以下,PBD)を利用したキャップ式真空圧密工法³を 選定した.

この工法の概要を図-5 に示す.特徴は粘土層の表層 約 lm 部分(透水係数は 10⁷ m/s 程度以下が必要)を負 圧シール層として利用することであり,これによって気 密シートの敷設を必要としないことである.粘土への負 圧は PBD に連結している排水ホースを集水管,ヘッダ ーパイプを通じて真空ポンプまで接続し,真空ポンプを 稼働することによって作用させることができる.

図-5 キャップ式真空圧密工法の概要

図-6 真空圧密による連れ込み沈下の想定

(2) 減容化の施工範囲

減容化施工の平面範囲と鉛直範囲について記述する.

a) 平面範囲

減容化施工に真空圧密を採用すると、等方的な応力の 作用により、改良域の周辺部では沈下とともに改良域側 へと向かう水平変位が生じる(図-6 参照).また、そ の影響により護岸が改良域側に変位し、護岸の遮水性が 損なわれる恐れがあった.そこで、FEM 圧密解析を実 施し、ケーソン目地部の変位幅に着目して護岸の遮水性 が確保できる減容化施工範囲を検討した.護岸の水平変 状パターンは、ケーソン4 函(100 m)が地盤変状の影 響を受けると仮定して目地の変位幅を式(1)で算定した.

$$W = B \times L/(n \times L_1) \tag{1}$$

ここに、W:目地の変位幅(許容値は10 cm), B:護岸 の水平変位量(FEM 解析), L:ケーソンの幅, n:変 位を受ける函数, L_1 :ケーソン1 函の長さである.ケー ソン式護岸の場合,真空圧密改良の離隔距離が護岸から 100 m 以上離れると,目地の変位幅は許容値以内となり, 遮水性能が確保できる結果となった.なお,護岸の形式 が異なるため離隔距離は 50~100 m となり,減容化施工 の平面範囲は、図-2 に示すとおりで,減容化面積は約 38.3 万 m²となった.解析の詳細は文献 4)を参照された い.

図-7 遮水基盤層の確保の

b) 鉛直範囲

廃棄物処分場の下部の粘土地盤に PBD を打設して圧 密改良する際には、「一般廃棄物の最終処分場及び産業 廃棄物の最終処分に係る技術上の基準を定める省令」⁵ 等に基づき、汚水処理などの管理が必要となる廃棄物を 埋め立てる管理型処分場としての機能を確保することが 不可決であった.特に、廃棄物による汚水が PBD を通 じて下部砂層などに浸出するような汚染拡散を防ぐ断面 構造とする必要があった.

同省令によると、粘土の透水係数が10⁷ m/sの場合は、 遮水層として5 m以上の層厚を確保する必要がある. こ の指針を透水係数が10⁸ m/sの粘土層に適用すると、浸透 時間が同等になるという観点から、遮水層厚は1.6 m以 上が必要になる³.下部遮水基盤層の確保に関しては、 この1.6 mに、PBD打設時の施工誤差の0.1 m、下部砂層 の凹凸の0.5 m、遮水層の将来的な沈下量の0.6 m、およ び安全代の0.2 mを考慮して、PBD下端と下部砂層の上端 までの間に3 mの在来粘土層(透水係数は10⁸ m/s以下) を確保することとした(図-7参照)⁹.

3. 施工

減容化施工は、2005~2006年度に試験施工を実施し、 2007年度~2015年度に本施工を実施した.施工の区画 分けを図-8に示す.試験施工はAとBの2区画であり、 本施工は118区画である.なお、1区画の大きさは真空 ポンプ1台が受け持つ面積で、約3,200m²である.

以下に、試験施工と本施工の施工方法を記述する.

(1) 試験施工

施工はA区画(60×60m)とB区画(61.2×61.2m) の2区画であり、A区画は2.0m、B区画は1.8mの正方

形配置で PBD を打設した.通常の地盤改良で使用され る PBD は幅 100 mm×厚さ 3.9 mm であるが、本施工では 幅 150 mm×厚さ 3.9 mm の幅広 PBD を用いた. 幅広 PBD を用いると、ドレーン材の有効径 du が増加し(幅 10 cm の場合は $d_w = 5$ cm,幅 15 cm の場合は $d_w = 8$ cm), 同じ日数で同じ平均圧密度を得るためのドレーン間隔 d を広くできるので、PBD の打設本数を低減できるとい う利点がある. 通常, dは 1.8 m以下の場合が多いが, d =2.0mの試験は圧密速度にBarronの理論が適用できるか 否かを調べるために実施した. PBD の打設は約+1.0 ~ -29.0 mで, 打設長は約30 mである. 地盤高は PBD の打 設位置毎にレッドで測量し、1.0 mの遮水シール層を確 保するために, PBD のキャップ部が地表面下 1.0 m に位 置するように打設した(図-7 参照). 負圧の作用期間 は*d*=1.8mおよび2.0mとも204日であり、これは*d*=1.8 mの場合で、平均圧密度が80%に相当する時間である (圧密係数は $c_h = c_v = 120 \text{ cm}^2/\text{day}$).

PBD の打設に関しては、PBD 打設船を処分場内で組 み立てて実施した.打設船はユニフロートを縦7基×横 8 基並べた 17.83 m×43.15 m の大きさであり、船上にレ ールを敷き、その上に PBD 打設機を載せた横行レール 式である⁷(写真-1).特徴としては、喫水が約 1.0 m と浅く(水深は約2m)、構成部材を陸上運搬して現地 へ搬入することが可能なため、閉鎖水域での稼動に適し ていることである.打設船を所定の打設場所に移動する と、1箇所でd = 1.8 mの場合は18本、2.0 mの場合は15 本の PBD を打設することができる.PBD の打設記録に よると、水上においても陸上施工とほぼ同様の約 70本/ 日の打設能力を確保することができた.

負圧配管は打設船の前面に張り出し部を設けて足場を 作り、打設した PBD から水面上に出てくる排水ホース を1本ずつ、集水管に連結した. 集水管はヘッダーパイ プに連結して護岸まで延長した. 3.(2)節の本施工を参照. 真空ポンプ設備は真空ポンプ、貯水タンク、負圧タン ク、水中ポンプなどからなり、台船上に置いて水面上に

写真-1 試験施工における PBD 打設船

図-9 真空ポンプ設備

浮かべた. 負圧タンクは台船の先端に架台を設けて水面 下 1.5 m の位置に設置した. 粘土からの圧密排出水は負 圧タンクに入り,水中ポンプの稼動により,貯水タンク を経緯して外部に排出される. 負圧タンクを水面下に設 置した目的は,処分場内と負圧タンク内の水位差を約 1 m 設けるためである. この水位差を設けると,PBD 内 の水位は粘土層の水位よりも 1m 低くなり,この水位差 によって,約 10 kN/m²の圧密荷重(浸透圧密)を粘土に 作用させることができると考えられる. 負圧タンク内の 水位は,水位感知センサーと水中ポンプの稼動を連動さ せることで確保することができる. なお,沈下計算に は減容化容積に対する安全側として,この水位差による 圧密荷重増分は考慮しないことにした.

(2) 本施工

本施工[®]では専用の PBD 打設船(船名「VCD-Triton」⁹, **写真-2**)を新たに製造して対応した.この打設船は幅 24 m×長さ 60 m の大きさであり,兵庫県淡路島で建造し て東京港に回航したものである.C ブロックへの搬入は, 本体重量が約 1,400 ton であったことから 3,000 ton 吊り起 重機船を用い,2本の PBD 打設機の長尺リーダー(約 50 m 長)をはずした状態で,航空機への影響の少ない 夜間に護岸外から処分場内に吊り込み,その後長尺リー ダーを取り付けた.

この打設船の特徴は、喫水が 1.5 m と浅いことであり、 PBD の打設可能深度は水面下約 40 m である. 地盤内の 平均水位は+3.0~+3.5 m であり、PBD は+1.5 m の平均地 盤面から平均-33.8 m (-31.5~-36.5 m)の深さまで(図-8 参照),約 30~38 m 長を打設した. PBD の打設長が変 化しているのは、在来粘土層の下端深度が南西方向に向 かって傾斜しているためである.

打設船の形式は船上にレールを敷き、その上に PBD 打設機を2機載せた横行レール式である. ケーシングを 保持するための長尺リーダーは2本のバックステーに支 えられている. 控えのワイヤーを甲板上に固定すると, 風速 60 m の荒天にも耐えることができる. PBD は幅 150 mm×厚さ 3.9 mmの幅広 PBD を 1.8 mの正方形配置 で打設した.打設船を所定の位置に移動すると、1箇所 で PBD を 24 本打設することができる. また, 打設位置 への速やかな移動と位置の精度確保のために、アンカー ウインチとスパッドキャリッジシステム⁹を搭載してお り、短時間で打設船を所定の場所に固定することができ る. スパッドキャリッジシステムはスパッドを粘土地盤 内に貫入させて固定し、このスパッドを反力として油圧 によって打設船の位置を 2.5 m 程度,水平に微調整でき るシステムである. このシステムを採用したことにより, PBD の施工本数は平均 194 本/日(10 時間稼動)であっ た.

負圧配管は打設船の前面に張り出し部を設けて足場を 作り、打設した PBD から水面上に出てくる排水ホース を1本ずつ、集水管に連結した(写真-3).その後、集 水管をヘッダーパイプに連結して護岸まで延長した(写 真-4).護岸上に真空ポンプを置き、負圧タンクは試験 施工と同様、水面下 1.5 m に設置した.負圧は 310 日間 (平均圧密度は 90%に相当),連続して作用させた (写真-5).

4. 地盤特性

(1) 地盤の層序構成

当地盤の層序構成を図-10に示す.当地盤は-40~-45

写真-2 専用の PBD 打設船「VCD-Triton」

写真-3 打設船張り出し部

写真-4 水上に浮かんだ集水管(負圧作用前)

写真-5 真空ポンプ運転中の排水状況

m以深に粘性土あるいは砂質土からなる七号地層があり, その上に有楽町層が位置している.有楽町層は旧海底面 に相当する-10~-12 m 付近がその上端であり,層厚は 30~35 m である.この層は比較的均質な粘土層からなる 上部有楽町層と,粘性土層と砂質土層が複雑に存在する 下部有楽町層とからなっている.減容化施工区域は浚渫 土の埋立処分土量を増加する目的で,有楽町層を-17 m 程度まで掘削し(図-3 参照),その上に浚渫土を埋立 処分した2層系粘土地盤である.なお,本文では有楽町 層を在来粘土層と記述している.

浚渫土の埋立処分は 2001 年度から開始し,減容化施 工期間中も,既に減容化した区域に継続して埋立処分し ている.浚渫土層は維持浚渫などで発生した浚渫土を埋 立処分したものであり,砂分含有量などの定量的なデー タは記録されていないが,砂分を多く含むことが確認さ れている.浚渫土の処分場への埋立処分方法を図-11 に 示す.浚渫土の埋立処分方法は次のようである.

2) 汚濁防止枠付土砂送泥船¹⁰の送泥ポンプにより、浚

図-10 地盤の層序構成

図-11 処分場への浚渫土の処分方法

渫土を周囲の海水とともに吸引し,圧送管を通じて 処分場内に輸送した.

3) 処分場の中には土砂のまき出し船があり、まき出し 船を随時移動させながら、浚渫土を1回あたり1m 程度の厚さで広範囲に堆積させた.

浚渫土の埋立処分にあたっては、浚渫土中の砂分はま き出し船近傍に堆積し、シルト・粘土分はまき出し船か ら離れた位置に堆積するなど、分級が起きたと考えられ る.また、まき出し船が着底しないように広範囲に移動 させたことから、浚渫土層の中には局所的に中間砂層が 堆積していると推定された.

砂分の局部的な堆積状況については、PBD を打設す る際のマンドレル貫入抵抗を利用した砂層と粘土層の土 質区分方法が新たに開発され、その結果を沈下量の評価 に利用し、不同沈下の解明に役立てる試みが既に実施さ れている.具体的な内容については、文献 11)~14)を参 照されたい.

(2) 粘土の土質特性

粘土の土質特性は試験施工時に詳細に調査した.この 詳細調査によって,沈下の予測計算に必要な粘土の圧密 特性を把握し,本施工においては,粘土の圧密特性は試 験施工区域と同一であると看做して,沈下予測計算に必 要な初期の地盤定数の調査のみを実施した.すなわち, 試験施工時には改良の前後において,試料のサンプリン グと RI コーン貫入試験を実施し,サンプリング試料に ついては物理試験と一軸圧縮試験および段階載荷圧密試 験を実施した.本施工では改良前に,RI コーン貫入試 験のみを実施した.RI コーン貫入試験を実施すると, 間隙比(湿潤密度から飽和度を 100 %として算定),先 端抵抗,周面摩擦および間隙水圧の深度分布が既知とな るので,粘土層と砂層の区分,および粘土層の沈下予測 計算に必要な初期間隙比を得ることができる^{15,16}.

A 区画と B 区画における粘土の圧密改良前の土質特性

図-12 粘土の土質特性(試験施工)¹⁷⁾

図-13 粘土の土質特性

を図-12 に示す. 浚渫土層内の粘土の平均間隙比は e_0 = 2.33, 平均単位体積重量は μ = 14.7 kN/m³, 圧縮指数は C_c = 0.88 であった. 圧密降伏応力 p_c の結果によると, 浚渫 土層内に中間砂層がある両区画では, 自重圧密はほぼ終 了状態にあった. 在来粘土層は e_0 = 3.07, μ = 13.7 kN/m³, C_c = 1.34 であり, p_c の結果によると, 浚渫土層の自重に よる圧密が進んでいないので, 両区画とも40 kN/m²程度 の未圧密状態であった. ただし, 浚渫土層の下端が砂層 であった A 区画では, 在来粘土層の表層約 5 m 部分に おいて, 浚渫土層を荷重とした自重圧密が進行している 状態であった. 粘土の圧密係数 c_v は浚渫粘土層および 在来粘土層とも 120 cm²/day であった. 図-13 に, 浚渫粘 土と在来粘土の c_v と間隙比 $e\sim$ 有効応力 p関係を示す.

圧密改良の前後で実施した土質試験(サンプリング試料)の結果を図-14に示す. 浚渫土層はA区画とB区画とも, 圧密改良による間隙比の減少量は明確でないが, 一軸圧縮強さと圧密降伏応力は増加した. 在来粘土層は, 改良後には間隙比の減少と一軸圧縮強さの増加および圧 密降伏応力の増加が明確に認められた.

RI コーン貫入試験の結果(B 区画)を図-15 に示す. 砂層と粘土層の区別においては、砂層は粘土層に比べて、 間隙比が 1.0 程度と小さく、先端抵抗と周面摩擦が大き く、かつ間隙水圧が静水圧に近いことを考慮した.図-

図-16 粒度組成の深度分布¹⁷⁾

15 に、改良後の中間砂層の位置を緑色で示す. 圧密改 良の前後で粘土層の土質特性を比較すると、先端抵抗の 結果からは明確でないが、間隙比、周面摩擦と間隙水圧 の結果に明確な違いがあり、サンプリング試料の試験結 果と同様、圧密による改良効果を確認することができた.

(3) 砂の土質特性

A 区画と B 区画における粒度組成の深度分布を図-16 に示す. 浚渫土層は砂分の多い箇所が随所に見られ、こ うした層が排水層となって、粘土の自重圧密がほぼ終了 したと考えられる.一方、在来粘性土層はほぼ均質な粘 土層であることがわかる.

沈下予測には粘土の沈下量に、浚渫土層内にある中間 砂層の沈下量を加算する必要がある.本施工の開始時点 において、中間砂層の沈下量は細粒分含有量や相対密度

によって変化すると考えられるが、工事費節減の観点から詳細な試験を行うことはしないで、試験施工時に得られた改良前後の平均間隙比の変化(RI コーン貫入試験結果)から算定した.すなわち、図-17 によると、圧密前の平均間隙比は $e_0=1.25$ であり、圧密後は $e_r=1.10$ であった.よって、砂層の沈下量は式(2)で求めた体積ひずみ Δc に層厚を乗じて求めた. $e_0=1.25$, $e_r=1.10$ を式(1)に代入すると、 Δc は6.7%となる.

$$\Delta \varepsilon = (e_0 - e_f) \times 100 / (1 + e_0) \tag{2}$$

5. 圧密管理

減容化施工において最も重要な管理項目は、時間~沈 下曲線である.すなわち、実測の沈下曲線に双曲線法を フィッティングして平均圧密度の推移を把握し、必要な 平均圧密度に達しているかを確認することである.また、 真空圧密を適用する場合には設計どおりの負圧が粘土に 作用しているか、を常時監視し、作用していない場合に は適切な対策を講じる必要がある.このことは、盛土荷 重は一定であるが、負圧は真空ポンプの調子や配管での 漏れなどによって大きく変動するからであり、十分な負 圧が継続して作用している場合には、十分な圧密改良効 果が得られると考えられる.

粘土に作用している負圧としては、改良区画中央部に おける PBD 先端の負圧を代表値として計測した.この 理由は真空ポンプから遠い位置にあり、負圧の漏れがあ った場合にはその影響を既に受けているからである.計 測方法は間隙水圧計によるものであり、間隙水圧計を取 り付けた PBD を粘土層内に打設した.

(1) 負圧管理

A 区画と B 区画における負圧の測定結果を図-18 に示 す¹⁷⁾. 図内の元圧は真空ポンプ室での値であり, -80~ -90 kN/m²とほぼ一定であった. 一方, PBD 先端部にお

図-19 平均負圧の頻度分布

いては両区画とも、-50 kN/m²程度から徐々に増加し、 100~120 日が経過した時点において-70 kN/m²程度にま で増加した.こうした負圧の漸増現象は、圧密初期の排 水量が沈下体積の 10~100 倍以上¹⁸⁾と多かったことから、 浚渫土層内に存在する中間砂層を通じて改良区画周辺部 からの吸水があったためと考えられる.この負圧の漸増 現象はほぼすべての改良区画で観察された.通常のキャ ップ式真空圧密工法による改良では、中間砂層の深度に 遮水シールをまきつけた PBD (事前の三成分コーン貫

表-1 計算(当初)と実測沈下の比較

L L	八 八	負圧20	最終沈下量		
스	カ	沈下量			
和戶面	実測	3.40 m	71%	4.17 m	
AСЩ	計算	3.17 m	70%	4.09 m	
DI 可	実測	4.04 m	80%	4.54 m	
D区画	計算	3.72 m	79%	4.43 m	

入試験で中間砂層の深度を特定し、PBD 製造工場で、 砂層とその上下+1 m 部分に遮水シールをまきつける) を打設して中間砂層からの吸水を防止するが(負圧が改 良区域外に伝播して、周辺区域で沈下が生じるのを防ぐ ため)、本施工では中間砂層も減容化の対象層であるこ と、および改良区画外側の護岸が遮水構造であり、護岸 外からの吸水は生じないことから、遮水シールをまきつ けない PBD を打設したためと考えられる.また、負圧 載荷後に負圧が漸増したのは、負圧の伝播によって中間 砂層の密度が増加し、透水係数が低下したためと考えら れる.計画では、全改良区画の全負圧期間における平均 値が-65 kN/m²以上を確保することであったが、実際の 平均負圧は図-19に示すように、-66.0kN/m²であった.

(2) 沈下管理

A 区画と B 区画の各中央部における沈下曲線を図-20 に示す.計算は当初(2007年度)の予測であり、この 時点では中間砂層の沈下に関する資料は無かったので、 砂層の沈下は考慮していない.実測の沈下は PBD を打 設した時点から生じ、負圧を作用させた時点までに A 区画で1.3 m, B 区画で1.6 m 程度の沈下が生じた. 負圧 を作用させた後は、初期に 0.5 m 程度の即時沈下が生じ、 その後は緩やかな沈下となった. この即時沈下は中間砂 層の圧縮沈下であると考えられる. PBD 打設から負圧 を停止した時点までの総沈下量は A 区画で 3.40 m, B 区 画で 4.04 m であった.

表-1 は計算(当初)と実測(双曲線法による実測沈下の予測値)の沈下量を比較したものである.計算(当初)は、最終沈下量 *S*_fは式(3)に示す *C*_c法で求め,沈下速度は Barron の近似解¹⁹で求めた. Barron の近似解は式(4)で求まる.以下では計算と実測の沈下量を比較する.

$$S_f = \frac{H}{1 + e_0} \left\{ C_c \log\left(\frac{p_0 + \Delta p}{p_c}\right) \right\}$$
(3)

$$U_{\rm h} = 1 - \exp\left(-8\frac{T_{\rm h}}{F(n)}\right) \tag{4}$$

$$F(n) = \frac{n^2}{n^2 - 1} \cdot \ln(n) - \frac{3n^2 - 1}{4n^2}$$
$$T_{\rm h} = \frac{c_{\rm h} \cdot t}{d^2} \qquad n = \frac{d_{\rm e}}{d_{\rm m}}$$

ここに、H は層厚、po は有効土被り圧、pc は圧密降伏応 力, Δp は負圧 (-65 kN/m²) である. また, U_hは平均圧 密度, Th は時間係数, Ch は水平方向の圧密係数 (Ch = c_v), d_eは有効径(=正方形配置の 1.13×1.8 m), d_wは PBDの換算直径(=8 cm)である.

負圧停止時の平均圧密度は、計算(当初)では A 区 画と B 区画でそれぞれ 70%と79%になると予測してい たが、実測では 71%と80%となり、比較的近い値とな った.計算(当初)と実測の最終沈下量は、A 区画はそ れぞれ 4.09 m と 4.17 m, B 区画は 4.43 m と 4.54 m となり, 両区画ともほぼ近い値となった.計算(当初)は砂層の 沈下を含んでいないが、実測とほぼ一致したのは粘土の 最終沈下量の計算に幾分の誤差を含んでいたためと考え られる.以上の結果, PBD 間隔が 2.0 m (A 区画) およ び 1.8 m (B 区画)の両区画とも、圧密速度は Barron の 近似解が適用できると考えられる.

本施工においては PBD 間隔 dを 1.8 m とし、平均圧密 度 Uを 90 %に設定した. この理由は d と Uを変化させ た際の概算工事費を求め、この工事費を計算沈下量で除 した際のコストが d=1.8 m と U=90%において最小であっ たことによる. その結果、本工事での負圧期間は310日 となった.

本施工における沈下の圧密管理フローを図-21 に示す. 沈下の圧密管理は次のように実施した. 最初に, 各施工 区画の中央部において, RI コーン貫入試験を実施し, この調査結果を基に砂層と粘土層を区分した. この区分 は RI コーン貫入試験から得られた先端抵抗,周面摩擦, 間隙水圧および間隙比 enの結果を考慮して決定したが, 2009 年度頃からは上記と、実測沈下曲線と以下に示す 理論沈下曲線のフィッティング結果などを考慮して, en ≤1.6 を砂層と判断した.次に,得られた e₀分布を用い て予測沈下計算を実施し、最終沈下量と時間~沈下曲線 を求めた. その方法は、粘土層は沈下量が C.法、沈下 速度が Terzaghi 理論に基づく鉛直方向排水(中間砂層に よる排水効果)と Barron の近似解に基づく水平方向排水 (PBD による排水効果)をともに考慮できる式(5)の Carrilo の方法¹⁹を用いた. 試験施工での計算では Barron の近似解のみであったが、中間砂層が多い場合には、 Carrilo の方法の方がより合理的であるという理由による.

$$U(t) = 1 - \{1 - U_v(t)\} \{1 - U_t(t)\}$$
(5)

ここに, U(t)は全体の平均圧密度, U,(t) は鉛直方向の平 均圧密度、U(t)は水平方向の平均圧密度である。

実測沈下曲線が得られると,実測沈下量の最新データ が、[1]計算で求めた予測最終沈下量の 90%以上か、あ るいは[2]双曲線法近似で求めた最終沈下量の 90 %以上 か,などを判断基準として負圧の停止時期を決定した.

以下では、試験施工区画において、図-21の方法の妥 当性を検討した結果を述べる. A 区画 (d=2.0 m) と B 区画(d=1.8 m)における計算上の時間~層別沈下曲線 を図-22 に示す. 図-22 の計算沈下量は図-21 で示した圧

図-22 時間~層別沈下曲線⁴⁾

密計算方法にしたがって求めたものである. PBD を打 設すると、浚渫土層の自重を荷重とした在来粘土層の沈 下が生じ、負圧を作用させると、浚渫粘土層、浚渫粘土 層内の中間砂層、および在来粘土層で沈下が生じる.計 算と実測の総沈下曲線を比較すると、A区画とB区画と も、両者は比較的よく一致することがわかる.砂層に関 しては、沈下ひずみとして、Aε=6.7% (4.(3)節参照)を 用いた. ちなみに、B 区画の負圧停止時点(204 日経 過)における各層の計算沈下量によると、

浚渫粘土層が 2.0 m, 中間砂層が 0.3 m, 在来粘土層が 1.9 m となり, 合 計は 4.2 m となった. 負圧停止時における平均圧密度を 算定すると、計算が85.3%(総沈下量 Sr = 4.78 m),実 測が82.7% (Sf=4.94m) となり、負圧を310日まで継続 して作用させると、平均圧密度が90%以上になること が確認できた.

本施工において、実測と計算の沈下量を比較すると、 総沈下量に関して必ずしも一致しない結果がいくつか見 られるようになってきた. そこで、砂層と浚渫粘土層の 総沈下量の計算精度を向上する目的で、次の修正を実施 した. すなわち, 砂層に関しては, Δε=6.7%と一律にす るのではなく,表-2に示すように,eo< 1.1 は沈下しな い, 1.1 ≦e0< 1.4 は e= 1.1 として式(2)で沈下量を求め, 1.4 ≦e₀< 1.6 は式(3)に示した C_c法で沈下量を求めた. 1.6≦enは浚渫粘土層として取り扱った. 図-23 は、図-13 の結果から各試験結果の en と C の結果をまとめたもの である.この図によると、enと C には式(6)の関係が認 められる.

$$C_{\rm c} / (1 + e_0) = 0.2 \tag{6}$$

なお, 表-2 に示した C=0.5 は式(6)において e=1.5 に対応

表-2 砂層の沈下量補正

する値である.また、1.4 ≦e0< 1.6 は透水性が粘土より も大きいと見做して排水層とした. 浚渫粘土層に関して も、C_c=0.88として一律で計算するのではなく、式(6)に 示した土質特性の変化を考慮することにした.

以上の修正によって, 負圧停止時の計算平均沈下量は, 118 区画の実測平均沈下量の-9.6%にまで一致させるこ とができた.なお、計算沈下量が実測より小さくなった 要因としては、処分場内と負圧ポンプ内との水位差(平 均約1m)を圧密荷重の増加分として考慮していない影 響などが考えられる.

6. 減容化効果

本章では、事業全体の減容化効果について述べる.減 容化の施工面積は 38.3 万 m²であり, 真空ポンプ 1 台が 受け持つ面積を約 3.200 m²として全体を 118 区画に分割 し、それぞれの区画で真空圧密による減容化施工を実施 した. 圧密改良効果としては、各区画の中央部とその周 辺部で沈下を測定した.

なお、2007年度には11区画で最初の本施工を実施し、 圧密改良効果を把握した.詳細は文献20)~22)を参照さ れたい.

(1) 作用負圧

各区画中央部の PBD 先端における負圧の平均値を頻 度分布として、図-19 に既に示した. 全区画の平均値は -66.0 kN/m² であり,設計負圧の-65 kN/m²よりも-1.0 kN/m²ほど大きい負圧を作用させることができた. なお, データの中には、平均負圧が-65 kN/m²以上に至らなか った区画もあったが、これらの区画には厚い中間砂層が 認められた.

(2) 沈下量

全区画の時間~沈下曲線を図-24 に示す. この図は負 圧作用時からの経過日数として示したものであり、PBD

図-24 全区画の時間~沈下曲線

3.65	5.14	6.17	4.69	6.03	6.55	4.66	4.38	4.07	4.77	4.01	4.88	5.20	6.42	5.28	5.42	4.91	4.82	4.28	4.98	4.39	5.42	5.31	5.25	4.60	4.53 4.5	51
3.67	5.80																4.49	3.13	4.34	3.65	7.34	4 41	2.20	2.54		
	6.41	7.17	5.63	7.24	6.97	5.71	5.94	4.17	4.62	3.97	5.49	5.81	5.01	4.30	5.88	4.51			4.67	5.60	7.44	4.41	5.20	5.54		
3.73	7.86																5.53	4.80	4.38	4.73	7.34	4.76	3.68	4.09	試験	
3.77	7 70	6.77	5.00	6.56	6.27	5.02	6.85	5.09	6.22	3.93	5.14	5.84	6.82	6.11	5.41	3.93	4.84	4.80	5.88	4 77	636	5.71	6.23	3.58	4.79	7
	7.70	-																	5.00	4.77	0.50					-
3.60	5.20	5.62	4.42	5.31	6.29	5.45	5.84	4.76	4.94	4.87	5.96	5.37	5.74	5.25	5.32	4.23	4.73	4.46	5.33	3.97	5.50	3.92	4.27	3.87	2.52	単位 :

図-25 各区画中央部の沈下量

表-3 減容化容積

施工年度		2007	2008 (その1)	2008 (その2)	2009 (その1)	2009 (その2)	2010 (その1)	2010 (その2)	2011	2012 (その1)	2012 (その2)	2013 (その1)	2013 (その2)	2014	合計/平均
改良面積	m ²	36503	26470	40151	35626	28840	26013	26578	25447	25447	26013	24881	26578	34488	383035
打設PBD	本	11325	8171	12425	11025	8925	8050	8225	7875	7875	8050	7700	8225	10675	118546
平均沈下量	m	4.36	4.35	5.55	4.66	4.68	5.36	5.78	4.77	4.83	5.48	6.40	5.67	5.10	5.13
減容化量	m ³	181243	134663	248980	186316	147596	154567	171169	137720	137525	156378	172761	162619	175739	2167276

の打設は、経過時間が0~約100日の範囲にある. なお、 PBDの打設時点(たとえば、経過時間がゼロ)において 既に沈下が生じているが、この沈下は前年度に実施した 減容化施工による連れ込み沈下である²³⁾.図-24による と、沈下速度は全体的に類似しているが、負圧停止時の 沈下量が大きく変動することがわかる.負圧停止時の 沈下量は、計算(C。法)での最終沈下量の90%以上をす べて満足したが、双曲線法で求めた最終沈下量に対して は全平均で86.0%となり、90%をやや下回る結果となっ た.

図-25 に、沈下量の平面分布を示す. なお、2014 年度 は現在負圧作用中であるので、計算値である. 図-25 に よると、沈下量は区画ごとに変動があり、この要因とし ては、中間砂層の層厚が影響していると考えられる. 図 -26 に、沈下量の頻度分布を示す. 沈下量は 2.52 ~7.86 mの範囲にあり、平均は 5.13 mであった. 図-27 は中間 砂層の合計厚さと沈下量の関係を示している. 中間砂層 の合計厚さが増加すると、それに反比例して、沈下量が 減少する傾向がある.

(3) 減容化容積

粘土地盤をキャップ式真空圧密工法で改良すると,負 圧の等方的な作用によって,改良と非改良域の境界部で は改良域側へと向かう水平変位が生じ,地表面の沈下形 状は改良域の外側の区域を含めて窪み状になることが知 られている²⁴⁾²⁵.そこで,同工法の技術マニュアル²では FEM圧密解析の結果から,沈下形状を図-28のように簡 易的に算定する方法を提案している.すなわち,改良域 注: 2014年度の平均沈下量と減容化量は予測値

図-27 中間砂層の合計厚さと沈下量の関係

外側への変位の影響範囲は改良深度Hに等しいと仮定し、 かつ改良域の境界から改良域内のH/2の範囲では沈下を 低減することとしている.

図-28 改良域の沈下分布(技術マニュアル2)

図-29 沈下測定地点と沈下容積の算定例

本減容化施工において,減容化容積は図-29 を考慮し て次のように算定した.すなわち,

- 負圧停止時においては各改良区域中央部の沈下量と ともに、改良区域外側の2地点において沈下量を測 定した。
- 2) 改良区域中央部の減容化量は、改良幅 B×沈下量 S で求めた.通常、中間砂層が不均一に存在する場合 には、沈下は平面的に一様ではなく不同沈下が生じ ると考えられる¹⁴⁾.その際の沈下容積は改良後に音 波探査などの面的な測量の結果から算定することが 望ましいが、本事例では浚渫土を連続的に埋立処分 しており、浮泥が改良区域に流れ込んできたため、 沈下の地表面分布を正確に把握することができなか った.
- 3) 改良区域端部(改良区画[3]で例示)の減容化量は改良域端部から改良域内 H₂/2 地点の沈下を S₃とし、改良域外側2地点との間の沈下を直線分布と仮定して求めた。

改良区域外側の各2地点で沈下を測定したのは,改良 区域外側の減容化容積をより正確に把握するためである. たとえば,改良区域[3]の減容化容積Vは,沈下形状が 仮定[1](図-29の青色破線)の場合は式(7)のV₁,および 仮定[2](図-29の濃い青色一点鎖線)の場合は式(7)のV₂ で求まる.実際の減容化容積はV₁よりもV₂に近い値で あり,各年度の総減容化容積に対する比率は約9~16% (全減容化容積に対しては約12%)であった.改良区域 全体における総減容化容積は平面ひずみ状態を仮定し, Vに奥行きを乗じて求めた.

$$V_{1} = S_{3} \times (B_{3} - H_{3}/4)$$

$$V_{2} = S_{3} \times (B_{3} + H_{3}/4)$$
(7)

以上のようにして求めた総減容化容積を年度毎にまと めると,表-3のようになる.ただし、リバウンド量は 測定していないので、考慮していない.当初計画では、 減容化容積は 184万 m³であると予想していたが、実際 は 216.7万 m³であった.新海面処分場への浚渫土の年間 平均埋立処分計画量(2012~2016年の5年間)は約94.2 万 m³であることを考慮すると、約2.3年分の埋立処分容 積が新たに確保できたことになり、言い換えると約2.3 年間、処分場を延命できたことになる.なお、数字は 2015年4月の推定値である.

(4) 費用対効果

1区画の減容化に要した費用をその区画の減容化容積 で除すると、空容積あたりの費用を求めることができる. 1区画の空容積あたりの費用は3,391~4,824円/m³の範囲に あり、全体(118 区画)の平均は3,967円/m³(2015年4月 の推定値)であった.

7. まとめ

東京都新海面処分場Cブロックにおいて、粘土の減容 化施工を実施した.施工は2005年度の試験施工から始め、 2007年度~2015年度に本施工を実施した.本施工の実施 にあたって得られた地盤工学上の要点をまとめると、次 のようである.

- 地盤は在来粘土層上に浚渫土を埋立処分した二層系 粘土地盤であり、在来粘土層の土質は均一であった が、浚渫土層には多くの中間砂層が存在していた.
- 2) 減容化の施工にあたっては、水上施工であることを 考慮し、粘土層の表層1m部分を遮水シール層とし て利用するキャップ式真空圧密工法を採用したが、 実施工で適用可能であった。
- 3) 圧密改良時に護岸が内側に連れ込み沈下するのを防 ぐ目的で、減容化施工の平面範囲を護岸から50~ 100 mの内側とした.将来的に廃棄物から出る汚水 がPBDを通じて下部砂層に浸出するのを防ぐ目的で、 PBDの打設下端深度を在来粘土層の下端から3 m上 部とした.
- 4) PBDは打設本数を低減するために、幅150 mm×厚さ 3.9 mmの幅広PBDを用いた.PBDの打設間隔と負圧 期間は、打設間隔と平均圧密度を変化させた際の概 算工事費を求め、この工事費を計算沈下量で除した 際のコストが最小になる条件で決定した.その結果、 打設間隔は1.8 m(正方形配置)、および平均圧密

度は90%となった. 平均圧密度が90%になる負圧期 間は310日である.

- 5) 設計負圧は平均-65 kN/m²であった.PBDの先端で測 定した負圧は負圧作用開始時は約-50 kN/m²と低かっ たが、負圧期間の増加とともに漸増し、310日後に は約-70~-75 kN/m²に増加した。全区画の平均値は -66.0 kN/m²であった。
- 6) 実測の沈下量は2.52~7.86 mの範囲にあり、平均沈 下量は5.13 mであった.
- 7) 実測の減容化容積は216.7 万m³であり、当初の予想 値184 万m³を11.8 %上回った.当処分場への浚渫土 の年間平均埋立処分計画量は約94.2万m³であること を考慮すると、約2.3年間、処分場を延命できたこ とになる.
- 8) 減容化に要した費用は, 3,967円/m³であった.

以上のように、本減容化事業では想定どおりの大きな 成果を得ることができた.なお、結論の 6),7),8)で示 した数字は 2015 年 4 月の推定値である.

沈下量は地盤の特性によって大きく変化することが考 えられる.すなわち,在来粘土層に関しては層厚と圧密 特性,未圧密の程度,その上に埋立処分された浚渫土層 の質量が影響し,一方,浚渫土層に関しては層厚と圧密 特性,中間砂層の存在,自重圧密の進行程度などが沈下 量に影響する.真空圧密を採用すると,圧密荷重は-65 kN/m²程度まで作用させることができるが,それ以上は 困難であり,おのずと荷重に限界がある.軟弱地盤の減 容化事業を検討する際には,上記の要因を十分に考慮し, 適切な事業計画を立案することが必要である.

ここで述べた本事業の内容は、試験施工に関しては文 献26)、2007年度に最初に実施した本施工については文 献27)、および2009年度までの主な結果は文献28)で既に 報告した.本文は試験施工から本施工の終了までを総合 的にまとめたものであり、本文が今後の参考になれば幸 いである.

参考文献

- 1) 新海面処分場:東京都港湾局ホームページ, http://www.kouwan.metro.tokyo.jp
- 2) 真空圧密ドレーン工法技術資料:真空圧密ドレーン 工法研究会,2011.
- 管理型廃棄物埋立護岸,設計・施工・管理マニュアル(改訂版):(財)港湾空間高度化環境研究センター, pp.1-20, 2010.
- 松山公正,新舎博,藤森修吾:東京都新海面処分場の例について,地盤工学会誌「講座」, Vol.61, No.7, pp.53-60, 2013.
- 5) 一般廃棄物の最終処分場及び産業廃棄物の最終処分 に係る技術上の基準を定める省令,改正,平 10.6.16 総厚令.
- 6) 畑中保志,大槻康雄,新舎博,山下徹:新海面処分

場における真空圧密改良時の遮水基盤層の確保に関 する考察,第 44 回地盤工学研究発表会, pp.1933-1934, 2009.

- 竹谷健一,長津辰男,山下徹:真空圧密による軟弱 粘性土地盤の減容化試験施工(その1),第42回地 盤工学研究発表会,pp.917-918,2007.
- 8) 角俊行,大久保泰宏,中川大輔,多賀正記:新海面 処分場における真空圧密ドレーン工法の選定と施工 方法,第44回地盤工学研究発表会,pp.833-834, 2009.
- 9) 中川大輔,廣井康伸:新海面処分場の延命化を可能 にする真空圧密ドレーン工法とドレーン打設船 「VCD-Triton」,建設の施工企画,pp.36-41,2008.
- 10) 汚濁防止枠付土砂送泥船「てんゆう」:技術パンフ レット、ダイゴー土木(株).
- 11) 渡部要一,畑中保志,新舎博,高将真,熊谷隆宏: 中間砂層の堆積分布が圧密沈下に及ぼす影響,第46 回地盤工学研究発表会, pp.805-806, 2011.
- 12) 渡部要一,直井恒雄,新舎博,高将真,白神新一郎:PBD 打設時のマンドレル貫入抵抗による地層断面推定法-中間砂層の分布調査-,地盤材料・地盤調査の精度とばらつきに関するシンポジウム, pp.197-204, 2012.
- 13) Watabe, Y., Shinsha, H., Yoneya, H. and Ko, C. : Description of partial sandy layers of dredged clay deposit using penetration resistance in installation of prefabricated vertical drains, *Soils and Foundations*, Vol. 54, Issue 5, pp. 1006-1017, 2014.
- 14) 新舎博,米谷宏史,高将真,熊谷隆宏,渡部要一: 局所的な中間砂層の堆積分布を考慮した粘土地盤の 沈下評価,地盤工学ジャーナル,Vol.71, No.2, 2015.
- 15) 和田光邦,新舎博,池野勝哉,吉村貢: RI コーンに よる真空圧密改良地盤の状態測定,第43回地盤工学 研究発表会, pp.149-150, 2008.
- 16) 竹谷建一,新舎博,熊谷隆宏,宮本健児:真空圧密 による軟弱粘性土地盤の減容化試験施工(その4), 第43回地盤工学研究発表会,pp.907-908, 2008.
- 17) 宮越国夫,新舎博,中川大輔:真空圧密による軟弱 粘性土地盤の減容化試験施工(その2),第42回地 盤工学研究発表会,pp.919-920,2007.
- 18) 直井恒雄,新舎博,日高征俊,高将真:新海面処分 場減容化施工の吸引水量に関する考察,第47回地盤 工学研究発表会,pp.875-876,2012.
- 19) 吉国洋:バーチカルドレーン工法の設計と施工管理, 技報堂, pp.37-40, 1979.
- 20) 角俊行,新舎博,山下徹,宮本健児:新海面処分場 における軟弱地盤の減容化(その1),第44回地盤 工学研究発表会,pp.835-836,2009.
- 畑中保志,新舎博,椎名貴彦,山下徹:新海面処分場における軟弱地盤の減容化(その2),第44回地盤工学研究発表会,pp.837-838,2009.
- 22) 和田光邦,新舎博,山下徹,熊谷隆宏:新海面処分場における軟弱地盤の減容化(その3),第64回土 木学会年次講演会,pp.1009-1010,2009.
- 23) 直井恒雄,新舎博,日高雅俊,仁井克明:真空圧密 における隣接ブロックの改良が改良区域の沈下に及 ぼす影響,第46回地盤工学研究発表会,pp.795-796, 2011.
- 24) 宮越国夫,山下徹,新舎博,椎名貴彦:真空圧密に

土木学会論文集C(地圈工学), Vol. 71, No. 4, 365-379, 2015.

よる軟弱粘性土地盤の減容化試験施工(その3),第 43回地盤工学研究発表会,pp.905-906,2008.

- 25) 中岡淳二,米谷宏史,仁井克明,本永博明:浚渫粘 性土を埋め立てた未圧密地盤への真空圧密工法の適 用(その1),第40回地盤工学研究発表会,pp.1053-1054,2005.
- 26) 手塚博治,竹谷健一,新舎博,山下徹:新海面処分場の延命化対策-真空圧密による軟弱地盤の減減化 -,地盤工学会誌,Vol.56,No.9,pp.14-17,2008.
- 27) 鈴木和実,新舎博,山下徹,椎名貴彦:真空圧密に よる新海面処分場の減容化対策,地盤工学会,第 54 回シンポジウム, pp.551-556, 2009.
- 28) 直井恒雄,渡部要一,新舎博,日高征俊,白神新一郎:新海面処分場の延命化対策-真空圧密工法による減容化効果-,土木学会論文集 B3, Vol.68, No.2, pp.498-503, 2012.

(2015.5.27 受付)

BULK COMPRESSION EXECUTION OF CLAYEY SOIL FOR PROLONGING THE NEW WASTE DISPOSAL AREA IN TOKYO BAY

Masaki ONO, Hiroshi SHINSHA, Daisuke NAKAGAWA, Hiroaki MARUOKA and Ayato TSUTSUMI

The New Waste Disposal Area in Tokyo Bay is the last place available in the region where the wastes including municipal/industrial wastes, construction waste soil, dredged soil and others can be disposed. This disposal area is required to be available for a long period. A work for bulk compression of disposed clayey soils was carried out with the vacuum consolidation method at the block C of the area to prolong its service life. In this project, the prefabricated vertical drains (PVD) with a width of 150 mm and a thickness of 3.9 mm were used. The PVD were installed in a square placement of 1.8 m to the clay layers of +1.5 to -33.8 m in average elevations, to which the vacuum pressure of -65 kN/m² was applied for 310 days. After a trial execution in 2005, full-scale work started in 2007 and ended in 2015. The vacuum consolidation method was applied to the area of 383,000 m² and the average consolidation settlement observed was 5.13 m. As a result, the estimated amount of bulk compression attains a value of 2,167,000 m³ which corresponds approximately to the amount of soils dredged in Tokyo Bay for 2.3 years. This paper describes the general overview of this project in terms of geotechnical engineering.