洋上風力モノパイル式基礎の単調載荷実験へ の拡張型相似則適用に関する基礎的研究

三好 俊康1・清宮 理2・吉田 誠1・松本 正一郎1

1 正会員 五洋建設株式会社 土木部門 洋上風力事業本部 技術部 (〒112-8576 東京都文京区後楽 2-2-8)
E-mail: toshiyasu.miyoshi@mail.penta-ocean.co.jp(Corresponding Author)
2 フェロー会員 一般財団法人沿岸技術研究センター (〒105-0003 東京都港区西新橋 1-14-2)

洋上風力発電設備の着床式基礎に多く用いられているモノパイル式基礎について、昨今では陸上フィールド試験の実施と 3 次元 FEM 解析との比較で、梁ばねモデルを拡張した欧州産学官プロジェクト" PISA" により、根入れ長を可能な限り短くする傾向にある。このプロジェクトでは砂地盤と粘土地盤で単調載荷試験が実施され、推奨されるフィールド試験ではモノパイルを模擬した直径 $1\sim 2m$ 程度の鋼管杭を用いる等、資材や計測項目が大規模なため実施は容易ではない。

そこで模型実験の適用が考えられるが、地盤を含む構造物の動的応答では 1G 場相似則と遠心場相似則を組み合わせた拡張型相似則の研究例があるものの、静的挙動に拡張相似則を適用した事例はない、そこで、本論文では遠心載荷試験による単調載荷試験を対象とした拡張型相似則の適用に着目して、杭の剛性や根入れ長の違いによる模型実験を実施し、水平地盤ばねを用いた梁ばねモデルを用いた再現解析を実施した。その結果、根入れ長 $3/\beta$ の静的応答は再現されたが、根入れ長 $1/\beta$ と $2/\beta$ については、より修正した解析方法を検討する必要があることがわかった。

Key Words: offshore wind monopile foundation, centrifuge test, generalized scaling law, beamspring analytical model, API p-y curve

1. はじめに

欧州を始め、洋上風力発電設備の着床式基礎はモノパ イル式が多く、日本でもモノパイル式基礎に関する研究 例えば1)、2)も近年実施されている. いわゆる単杭で風車タワ ーを支持するモノパイル式基礎は、その構造の単純さか ら他の着床式基礎に比べ、製作費が安価であるが、昨今 の風車大型化に伴い断面諸元は大型化し、重量も重くな る傾向にある. 日本における着床式基礎の設計では、地 震荷重を考慮する必要があるが、他に考慮すべき風荷重 /波浪荷重の作用では、地盤との相互作用を考慮するため、 通常はAPI³による地盤ばねである" p-yカーブ"を用いた 梁ばねモデルを用いる。このカーブは外径約0.6mの鋼管 杭を用いた試験により設定されたもので、当初は石油ガ ス産業用採取設備のジャケット式基礎に適用されていた が、その単純さから洋上風力モノパイル式基礎やジャケ ット式基礎の相互作用ばねに広く用いられている. 一方 で、p-vカーブは、近年大口径化するモノパイル式基礎へ の適用性について様々な研究がなされている. 欧州産学 官プロジェクト"PISA (PIle Soil Analysis)"では、細長い

杭向けに開発されたp-yカーブが、根入れ長/外径比L/D=2~6というモノパイル式基礎では、水平載荷に対して異なった変形を示すことに着目し、仏国の高密度砂地盤⁹と英国の過圧密粘土地盤⁹において、モノパイルを縮小した鋼管杭による単調載荷試験が主に実施された。実験結果を対象とした3次元FEM解析との比較により、梁ばねモデルとp-yカーブによる設計方法に関して、"新しいモノパイル設計モデル"として、杭周面摩擦の影響を回転ばねとして考慮する等の考えを導入⁹し、経済性の観点から杭の根入れ長縮小を図っている。しかしながら、こうした実大規模フィールド試験実施はサイト選定等比較的困難で、実際のモノパイル基礎を用いた試験は不可能に近い

一方、日本ではモノパイル式基礎の設置事例が現状少ないため、根入れ長について「十分な安定性を有するようモノパイル構造の海底地盤への根入れ長を適切に設定」し、 $3l\beta$ (β : 杭の特性値)を目安として、「特別に詳細な検討をしない限り、根入れ長が $2l\beta$ もしくは長杭の場合のlm1を下回ることは好ましくない」とされている 7 .この"特別に詳細な検討"には実験や3次元FEM解析が含まれ

ていると思われる.

日本におけるモノパイル式基礎の模型実験に関する研究の一例®では、密な砂地盤に根入れされたステンレス製模型杭へ、短サイクルの水平方向に繰返し荷重を与えた遠心模型実験を実施している。実験®では杭基部抵抗と地盤抵抗の劣化に着目し、杭の根入れ長/外径比を3.75~8に変化させている。この比が5以下では、杭基部のモーメント抵抗が優位に寄与していること等が確認されているが、1 G場相似則と遠心場相似則を考慮した拡張型相似則の適用性が検証されていないことから、プロトタイプ杭の寸法を相似縮尺した模型を用いている。

本論文では、こうした背景を踏まえて、実規模実験に 先立ち、遠心載荷実験により大口径モノパイルの挙動を ある程度把握することと、フィールド実験計画に資する ことを目的としている。既往の研究において提唱された 1 G場相似則を適用した拡張型相似則を用い、異なる根入 れ長/杭径・板厚の模型杭による実験結果と、梁ばねモデ ルによる再現解析を比較し、拡張型相似則の適用性と、 杭諸元や根入れ長による杭挙動の違いについて考察した。

2. 拡張相似則の適用による検討

遠心載荷実験の実施にあたり、実寸大の杭として大口径杭(外径D=9.5 m、板厚t=95 mm)・基準杭(D=6.0 m、t=65 mm)・小口径杭(D=2.6 m、t=26 mm)の3タイプを想定した。これらについて1 G場相似則に基づき1 G場模型に縮尺し、更に遠心場相似則に基づき遠心場模型に縮尺し、杭全長や根入れ長については遠心載荷実験用土槽寸法を考慮して設定した。本論では実物比(長さ)で大口径は1/175,基準杭は1/150,小口径杭は1/105を想定した。

(1) 1 G 場相似則

本論文では濱田ら%による1G場相似則を適用した。 濱田らは,重要な力のバランスのみ議論できる「力の比を用いる方法」に言及している。本論文では表-1に示す相似則を適用し,杭については曲げ剛性に着目して仕様を設定した。

(2) 遠心場相似則

当社保有の遠心載荷実験装置を用い、遠心加速度 50 G とした. 表-2 に相似則を示す.

表-1 1 G場相似則

物理量	実物/模型	縮尺		
初垤里		а	b	С
長さL	λ	3.5	3	1.9
杭径 D ・杭厚 t	$\lambda^{I.5}$	6.5	5.2	2.6
変位δ	$\lambda^{0.5}$	1.87	1.73	1.38
曲げ剛性EI	λ^6	1838	729	47
モーメントM	$\lambda^{4.5}$	281	140	18
荷重P	$\lambda^{3.5}$	80	47	9.5
地盤反力係数kn	$\lambda^{0.5}$	1.87	1.73	1.38
地盤の極限耐力Pu	λ	3.5	3	1.9

 λ :縮尺比,a:大口径杭,b:基準杭,c:小口径杭

表-2 遠心場相似則 (50 G)

物理量	実物/模型	縮尺
長さL	η	50
応力 σ	1	1
ひずみε	1	1
曲げ剛性EI	η⁴	6,250,000
モーメントM	η^3	125,000
荷重P	η^2	2,500

n: 縮尺比

3. 遠心載荷実験

(1) 模型諸元

遠心載荷実験の模型杭諸元を表-3 に示す. 模型杭根入れ長は共通として $2l\beta$ とし、基準杭については $1l\beta$ と $3l\beta$ の 2 ケースを実施した. なお、地盤は東北珪砂 6 号(単位体積重量 16.2 kN/m³)により、相対密度 D_r =80%で作製し、表-3 中の②と③における曲げ剛性算定には、鋼材のヤング係数を 2.05×10^8 (kN/m²)とした. アルミパイプのヤング係数は材料試験結果の平均値である.

表-3 遠心載荷実験模型の主な諸元

	杭	外径	板厚	備考
基	①遠心場	20 mm	1.5 mm	アルミパイプ(ヤング係数55.1 GPa)
準	②1 <i>G</i> 場換算	1.0 m	26 mm	曲け剛性比99%(対①1G場換算)
杭	③実寸換算	6.0 m	65 mm	曲げ剛性比99%(対②実寸換算)
大	①遠心場	30 mm	1.0 mm	アルミパイプ(ヤング係数78.9 GPa)
口 径	②1 G場換算	1.5 m	13 mm	曲げ剛性比104 %(対①1 G場換算)
杭	③実寸換算	9.5 m	95 mm	曲げ剛性比101%(対②実寸換算)
小	①遠心場	16 mm	1.5 mm	アルミパイプ(ヤング係数66.6 GPa)
口径	②1 <i>G</i> 場換算	0.9 m	13 mm	曲げ剛性比97 %(対①1 G場換算)
植杭	③実寸換算	2.6 m	26 mm	曲げ剛性比101%(対②実寸換算)

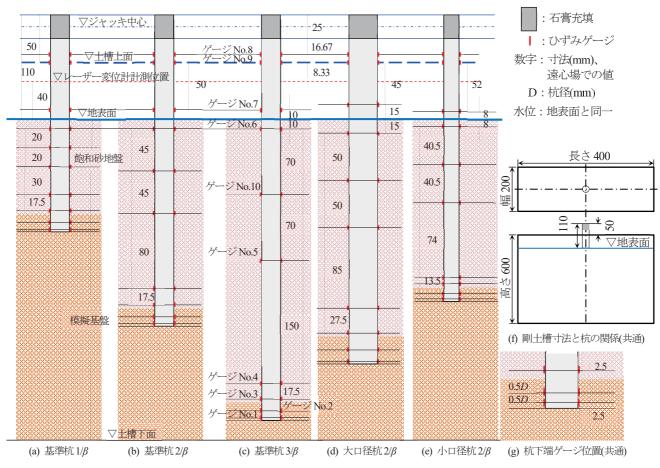


図-1 遠心載荷実験の模型および計装図 (ゲージ No. は共通で(c)に示すとおり)

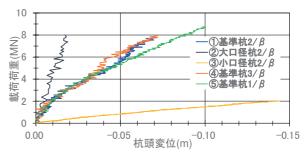

模型杭ジャッキ加力部には杭変形を避けるために杭内側に石膏を充填した.大口径杭と基準杭では、最大載荷荷重を風車タワー下端における風荷重ローディングデータ(終局限界状態)として水平荷重4MN(実寸)を想定し、最大載荷荷重を8MN(実寸)程度とした.小口径杭は4本レグジャケット基礎杭を想定し、載荷荷重を1/4とした.実験では1G場でセメントを混合した模擬基盤へ模型杭を1D根入れさせた後、粘性流体を併用して飽和砂地盤を作製した.打込み杭を想定して地表面まで杭内側に砂を充填した後、遠心加速度50Gを与えた.実験状況例および模型/計装図を各々写真-1と図-1に示す.実験では地表面高さと杭突出長を共通とし、剛士槽中心に模型杭を設置した.

写真-1 遠心載荷実験状況例

(2) 単調載荷実験の結果

ジャッキ荷重とジャッキストロークの関係を**図-2** に示す. 荷重とストローク(杭頭変位)は拡張型相似則を適用した実寸換算値とした. なお, 杭の曲げひずみは 300 $\mu \sim 700~\mu$ 程度で線形範囲内であった.

①最大荷重 7.78 MN, ②最大荷重 7.98 MN, ③最大荷重 2.01 MN,

④最大荷重 8.02 MN, ⑤最大荷重 8.76 MN

図-2 杭の荷重ーストローク関係 (実寸換算)

図-2 より根入れ長 $2/\beta$ での杭頭変位は、基準杭に対して大口径杭では 1/3 倍と小さく、小口径杭では 2 倍となった。また、基準杭の杭頭変位は $3/\beta$ と $2/\beta$ の差が少ないが、 $1/\beta$ では 1.3 倍程度となった。なお実験映像から $1/\beta$ において、剛体的な挙動を示していることが確認できた。

4. 再現解析

(1) 解析方法

拡張型相似則を適用した実寸構造について汎用構造解析プログラムにより杭を弾性梁,地盤を水平地盤ばねとした梁ばねモデル(図-3)により再現解析を実施した.

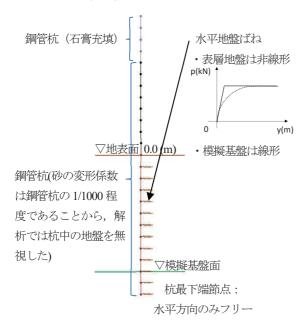


図-3 構造解析モデルの概要

(2) 水平地盤ばね

API³による砂地盤の p-y カーブを元に、梁要素分担幅を考慮して水平地盤ばねを算出した。なお、非線形モデル化の都合により"バイリニア型"としたが、風力発電基礎用の解析プログラム SESAM^{III}により別途 p-y カーブを考慮した 1G 場模型換算における解析を行った。地盤ばねの変形量は十分小さく弾性範囲にあり、両者の結果がほぼ一致していることを確認している。

(3) 地盤反力係数 kn

$$D_r = 21\sqrt{N/\{0.7 + (\sigma_v'/98)\}}$$
 (4a)

$$\phi = 25 + 3.2\sqrt{100N/(70 + \sigma_{v}')}$$
 (4b)

表-4 内部摩擦角と地盤反力係数の関係 3)

ø (度)		$k_h(kN/m^3)$	
	25	5,400	
	30	11,000	
	35	22,000	
	40	45,000	

本論文では、Wiemann ら $^{12)}$ を元に、式(4c)により参照対象とする杭径をp-yカーブ設定の元である杭径0.6m として、杭径増加に伴う低下を考慮した地盤反力係数 k_n *を用いて実験時の根入れ長を設定した。

$$k_h^* = k_h (0.6/D)^{4(1-a)/(4+a)}$$
 (4c)

式(4c)のaはべき指数で、密な砂地盤向けである 0.5^{12} とし、再現解析では地盤反力係数と極限耐力に関して、 表-1より各々 $2^{0.5}$ 倍、2倍とした.

(4) 杭の根入れ長

前項で計算した地盤反力係数を用いて算定した杭の特性値βより根入れ長を確認した。結果を表-5に示す。 kn*適用では小口径杭で実寸換算根入れ長が想定した根入れ長より3m程度長く、その他の杭についてはほぼ想定通りとなったが、kn適用では、全杭で、実寸換算根入れ長が想定した根入れ長より短くなった。

表-5 杭の特性値と根入れ長

杭種別	想定した 根入れ長	地盤反力係数 上 k _h (kN/m³) 下 k _h *(kN/m³)	根入れ長 上 $L(m)$ 下 $L^*(m)$
基準杭	①100 mm, ②5.0 m,		11.1
$(1/\beta)$	③15.0 m		14.5
基準杭	①200 mm, ②10.0 m	5.56×10 ⁴	22.2
$(2/\beta)$	③30.0 m	1.93×10 ⁴	29.0
基準杭	①300 mm, ②20.0 m		33.3
$(3/\beta)$	345.0 m		43.5
大口径杭	①230 mm, ②11.5 m	5.56×10 ⁴	29.6
$(2/\beta)$	③40.3 m	1.63×10 ⁴	40.3
小口径杭	①178 mm, ②8.9 m	5.55×10 ⁴	11.2
(2/ β)	③16.9 m	2.89×10 ⁴	13.2

①:遠心場模型における値、②:①を1 G模型換算した値、

③:②を実寸換算した値、 $L: k_0$ による値、 $L^*: k_0^*$ による値

(5) p-y カーブ

地盤応答を示す p-y カーブは、地表面以下深度を X (m)として、実験で用いた砂地盤に対して p-y カーブを 設定した.

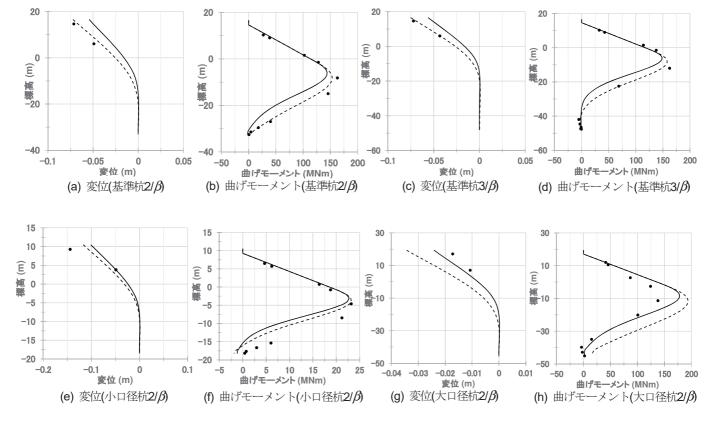
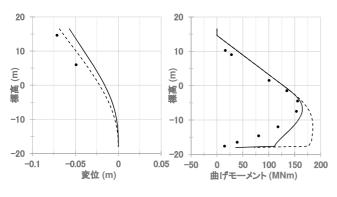



図-4 再現解析(実線: k_b 、破線: k_b *)と実験結果の比較(黒丸:実験結果の実寸換算)

(a) 変位(基準杭1/β)

(b) 曲げモーメント(基準杭1/β)

図-5 再現解析(実線: *k_{li}*, 破線: *k_{li}**)と実験結果の比較 (黒丸: 実験結果の実寸換算)

適用した p-y カーブ 3)を以下に示す.

$$p = Ap_u \tanh \left(\frac{k_h X}{Ap_u} y\right)$$
 (4d)

$$A = \left(3 - 0.8 \frac{X}{D}\right) \le 0.9$$
 (4e)

$$p_u = \min \begin{cases} (C_1 X + C_2 D) \gamma' X \\ C_3 D \gamma' X \end{cases}$$
 (4f)

ここに.

p:単位深さあたり地盤反力(kN/m), v:水平変位(m),

 p_u : 単位深さあたり地盤反力上限値(kN/m), D: 杭径(m),

A: 係数で上限値0.9、 $\gamma:$ 水中単位体積重量(kN/m³),

 $C_{I} \sim C_{3}$: 内部摩擦角によって定まる係数³⁾

(6) 杭の諸元

再現解析の杭諸元は表-3 に示した「③実寸換算」の値を用いた。ヤング係数は杭で 2.05×10^8 (kN/m^2)とし,石膏充填箇所で 5.0×10^6 (kN/m^2)と仮定した合成断面として,杭のヤング係数で除した等価断面積および等価断面二次モーメントを付与した。

(7) 再現解析

a) 拡張相似則を適用した再現解析

拡張相似則を適用して実寸換算した構造諸元を用いて、再現解析を実施した。 図-4 および図-5 には、杭の変位と曲げモーメントに関して、根入れ長 $2/\beta$ (基準杭、大口径杭、小口径杭)と $3/\beta$ (基準杭)、 $1/\beta$ (基準杭)の解析結果をそれぞれ示した。なお同図には k_h および k_h *を用いた再現解析結果とともに、実験結果(実寸換算)を示した。なお地盤ばねは全ケースで線形範囲内の応答であった。

b) 遠心模型実験の再現解析

拡張相似則適用による再現解析を実施するにあたり,図-4 に示した構造解析モデルを確認するため,遠心模型実験を実寸換算した解析を実施している.解析の対象は基準杭で根入れ長 $3/\beta$ であり,遠心模型実験で用いた杭を実物換算した結果は外径 $1.0~\mathrm{m}$ で板厚 $26~\mathrm{mm}(\mathbf{表}-3~\delta\mathrm{m})$ である.再現解析における載荷荷重は,アルミパイプの曲げひずみ $2000~\mathrm{\mu}$ 程度を示した実寸換算荷重 $925.5~\mathrm{kN}$ と

し、地盤反力係数は式(4c)により外径 1.0 m における低減係数を考慮した。再現解析結果を図-4.4 に示す。

(a) 変位(基準杭3/β)

(b) 曲げモーメント(基準杭3/β)

図-6 遠心実験の再現解析(破線: k_h*) と実験結果の比較 (黒丸:実験結果の実寸換算)

図-6より、再現解析の変位は実験結果の実寸換算より20%程度大きく、曲げモーメントは標高-10m以深を除き、再現解析の方が実験結果実寸換算より5%程度大きい程度で、構造解析モデルの使用に支障無いと判断した.

(8) 拡張相似則を適用した再現解析に関する考察

杭の変位 δ と地中部曲げモーメントMeについて考察する.

a) 基準杭 2/*β*について

図-4(a)~(b)より、 k_h による解析結果は δ で45%から70%程度大きく、最大Meは16%大きい、 k_h *を用いた解析結果では δ が7%から20%程度大きいものの、最大Meは6%増加となり、後者の方が再現解析の精度が良いと思われる.

b) 基準杭3/Bについて

図-4(c)~(d)より、 k_h による解析結果は δ で 45%程度大きく、最大 Me は 34%大きい、 k_h *を用いた解析結果では δ が 1%から 4%程度大きく、最大 Me は 10%程度の増加となり、後者の方が再現解析の精度が良いと思われる.

c) 基準杭 1/Bについて

基準杭 $1/\beta$ では、a)とは逆に k_h を用いた解析の方が実験結果に近い傾向を示しており、再現解析の一致度は基準杭 $2/\beta$ と $3/\beta$ よりも劣る。図-4(a)~(d) と図-5 を比較すると、基準杭 $1/\beta$ では標高 5 m 以深の地中部において、再現解析結果と実験結果の乖離が大きい。この現象については、ケーソン等の地下構造物の設計手法で用いられる回転ばね等を今後考慮する必要があると思われる。また、地盤反力係数の低減有無による違いについても考察が今後必要である。

d) 小口径杭 2/βについて

図-4(e)~(f)より基準杭 $2/\beta$ と $3/\beta$ に比べ、再現解析結果と実験結果実寸換算との乖離が大きいものの、 k_n *による

再現解析の方が実験結果実寸換算に近い. このケースについても、地盤反力係数の低減有無の影響に関する考察が今後必要と思われる.

e) 大口径杭 2/Bについて

図-4(g)~(h)より、 k_h を用いた解析が k_h *による解析よりも実験結果に近い傾向を示しているが、実験結果実寸換算との乖離が基準杭 $2/\beta$ と $3/\beta$ より大きいのは基準杭 $1/\beta$ の結果と同様である. 特に大口径杭 $2/\beta$ では、地表面標高0 m より上方(気中部)の曲げモーメントは、 k_h および k_h * を用いた再現解析結果が、実験結果実寸換算よりも大きいことが、他のケースと異なっている. 本ケースでも c) と同様に今後の更なる検討が必要と思われる.

5. まとめ

本論文では、洋上風力発電設備モノパイル式基礎を対象とした、拡張型相似則適用による単調載荷実験結果と再現解析結果について示した。実験結果と再現解析結果の比較より以下のことがいえる。

(1) 拡張型相似則の適用性

拡張相似則を適用した再現解析により、根入れ長が $2/\beta$ 以上あれば実寸の挙動をある程度再現できることがわかった. フィールド試験計画にある程度有用と思われるが、 基準杭 $1/\beta$ および大口径杭 $2/\beta$ は更なる検討が必要である.

(2) 再現解析における地盤ばね

API による p-y カーブを元にバイリニア型非線形特性を与えた地盤ばねによる解析を行った。地盤ばねの変形量は線形範囲内で、杭径に基づく地盤反力係数の低減により、基準杭 $1/\beta$ および大口径杭 $2/\beta$ を除き、特に根入れ長 $3/\beta$ では実験結果と良い一致を示した。

(3) 再現解析における乖離について

基準杭根入れ長 1/βおよび大口径杭根入れ長 2/βでは、他の杭に比べて再現解析に乖離が見られたため、今後はケーソン等の地下構造物設計手法を参考として、回転ばね等を考慮した検討を実施する必要があると考えられる。

(4) 地盤反力係数の低減について

本論文で用いた地盤反力係数の低減は、杭種や根入れ 長により再現解析と実験結果で乖離が見られたため、今 後更なる検討が必要と考えられる.

(5) 内部摩擦角の設定について

本論文では、設計で用いる換算式を適用したが、実際 の地盤における実験結果との比較が今後必要である.

REFERENCES

- 中村俊介,松本陽介,甲斐郁寛,石原孟:水平荷重を受けるモノパイル基礎の3次元FEM解析,令和5年度土木学会全国大会第78回年次学術講演会,I-331,2023. [Shunsuke, N., Yosuke, M., Ikuhiro, K and Takeshi, I.: 3D FEM analysis of laterally loaded monopile foundation, Japan Society of Civil Engineers 2023 Annual Meeting, I-331,2023.]
- 2) 石井やよい, 杉山博一, 桐山貴俊, 嶋田健司, 石原孟: 砂地盤中の単杭の単調・繰返し載荷時の地盤ばね評価, 令和5年度土木学会全国大会第78回年次学術講演会, I-333, 2023. [Yayoi, I., Hirokazu, K., Kenji, S and Takeshi, I.: Evaluation of Subgrade Reaction Characteristics of a Single Pile in Sand for Monotonic and Cyclic Loading, , Japan Society of Civil Engineers 2023 Annual Meeting, I-331, 2023.]
- AMERICAN PETROLEUM INSTITUTE: Geotechnical and Foundation Design Considerations, ANSI/API REC-OMMENDED PRACTICE 2GEO FIRST EDITION, APRIL 2001 ADDENDUM1, OCTOBER 2014
- 4) Ross A.M, Byrne W.B, Guy T.H, William J.A.P.B, Harvey J.B, Kenneth G.G, David J.P.I, Richard J.J, Christopher M.M, Alastair M.W, David M.P, Jesper S.G, David, M.G.T, Lidija.Z: Monotonic laterally loaded pile testing in a dense marine sand at Dunkirk, *Géotechnique*., [https://doi.org/10.1680/jgeot.18.PISA.004]
- 5) Byrne W.B, Ross A.M, Harvey J.B, William J.A.P.B, Kenneth G.G, Guy T.H, David J.P.I, Richard J.J, Christopher M.M, Alastair M.W, David M.P, Jesper S.G, David, M.G.T, Lidija.Z.: Monotonic laterally loaded pile testing in a stiff

- glacial clay till at Cowden, *Géotechnique*. , [https://doi.org/10.1680/jgeot.18.PISA.003]
- 6) Harvey J.B, David M.G, Lidija Z, Christelle N.A, Byron W.B, Guy T.H, Kenneth G.G, David J.P.I, Richard J.J, Christopher M.M, Ross A.M, Antonio M.G.P, David M.P.: PISA design model for monopiles for offshore wind turbines:application to a marine sand, *Géotechnique*., [https://doi.org/10.1680/jgeot.18.P.277]
- 7) 洋上風力発電施設検討委員会:洋上風力発電設備に関する技術基準の統一的解説 (令和2年3月版)
- 8) Akihiko, T., Naoya, O., Takaaki, K., Yukiho, K and Satoshi, I.: Centrifuge model tests on large-diameter monopiles in dense sand subjected to two-way lateral cyclic loading in short-term, *Soils and Foundations* 62(2022) 101148.
- 9) 濱田純次, 土屋富男, 鬼丸貞友: 1 G 場の静的実験における地盤-杭破壊時の相似則, 構造工学論文集, Vol.46A(2000年3月). [Junji, H., Tomio, T., and Sadatomo, O.: The similarity law for the static model test in 1G gravity field on failure of the ground and the pile, Journal of structural engineering., Japan Society of Civil Engineers, Vol.46A, 2000.3.]
- 10) 日本港湾協会:港湾の施設の技術上の基準・同解説(平成 30 年)
- 11) DET NORSK VERITAS(DNV): SESAM GENIE FEM SYSTEM, Analysis User Guide Manual, 2021.
- 12) Jens Wiemann., Kerstin Lesny., Werner Richwien.: Evaluation of Pile Diameter Effects on Soil-Pile Stiffness, *Engineering, Environmental Science*, 2004.

(Received February 6, 2024) (Accepted May 13, 2024)

BASIC STUDY ON THE APPLICATION OF GENERALIZED SCALING LAW TO MONOTONIC LOADING TESTS ON OFFSHORE WIND MONOPILE TYPE FOUNDATION

Toshiyasu MIYOSHI, Osamu KIYOMIYA, Makoto YOSHIDA and Shouichirou MATSUMOTO

Recently, monopile type foundation is popularly used for fixed foundation for offshore wind facilities and has tended to make the penetration length as short as possible, based on the JIP project "PISA" in Europe. In the PISA project onshore field tests are conducted and developed the enhanced 1D beamspring models compared with 3D FEM analysis. In this project, monotonic loading tests were conducted on sandy and clay soils, and field loading tests are recommended, but field tests are not easy to conduct in terms of materials and measurement scale, such as using steel piles with a diameter of 1-2 m to simulate the prototype monopile.

Therefore, the model tests such as centrifuge tests may be applied. However, there are no examples of generalized scaling law for static behavior, while there are some studies on the dynamic response of structures, including soils, using generalized scaling law that combines the 1G field scaling law and the centrifugal field scaling law. In this paper the application of the generalized scaling law to monotonic loading tests using centrifuge loading tests is focused, where the scale of experiments is relatively small, to analyze the behavior of piles depending on the penetration length and to reproduce it using a beam spring model. As a result, the static response of the prototype with $3/\beta$ was reproduced by the application of generalized scaling law and as to $1/\beta$ and $2/\beta$, more modified calculation method should be considered.