遺伝的アルゴリズムを用いた 物理的環境に基づくアマモ場状況の再現

中瀬 浩太1・鵜飼 亮行2

¹ 正会員 五洋建設(株)環境事業部 (〒112-8576 東京都文京区後楽 2-2-8) E-mail: kouta.nakase@mail.penta-ocean.co.jp (Corresponding Author) ² 正会員 五洋建設(株)技術研究所 (〒329-2746 栃木県那須塩原市四区町 1534-1) E-mail: akiyuki.ukai@ mail.penta-ocean.co.jp

アマモ場造成は環境修復やブルーカーボンにより注目されている.アマモ分布適地は水深やシールズ 数等のパラメーターの範囲より評価されるが重回帰式等の方法を試みたものの再現は困難であった. そこで,アマモ分布と物理条件が同一メッシュに存在する既存のデータを用いて,被度・草丈に対す る各条件を折れ線関数で表せるとし,これを構成する数字列を遺伝子情報と見立て,これらの選択・交 配・突然変異の操作を繰り返して最も優れているもの抽出する遺伝的アルゴリズムにより関数の当ては めを行った.10万回の試行により被度・草丈分布が定性的に再現できたが,推定元のデータにアマモ 非分布域が多く,群落状況の定量的評価には課題が見られた.

Key Words : *eelgrass bed, Status of community, planar distribution, physical parameters, genetic algorithm*

1. はじめに

沿岸域において、二酸化炭素固定という観点からアマ モ場造成に注目が集まりつつある¹⁾. アマモ場造成につい ては、1980年代より技術開発が進められ、現在では各種 のガイドラインなどが公表されている²⁾. しかしながら、 アマモ場を造成しようとするとき、ガイドライン等に沿 って実施すれば、確実に造成されるとは限らない. アマ モ場造成技術は、未だに完成段階にあるとは言えない. これはアマモ場成立条件についての理解が不十分である こと、および推定した各条件によるアマモ場分布の再現 が不十分であることによると考えられる.

アマモ場が成立する条件については、先に述べたよう に、多くの調査事例より、例えば**表-1**に示すように、光条 件・水質・底質・波浪などの各要素別に、その範囲が示さ れている².

これらの各条件を用いて、各条件の分布範囲よりアマ モ分布場所を推定する方法や、各条件別にアマモ分布の SIモデルを作り、これらを統合したHSIモデルで評価する HEPによりアマモ場が分布可能な場所を推定して、アマ モ場の評価や造成あるいは保全の計画が行われている^{3,4}).

しかし、多くの検討事例ではアマモ分布可能な場所を

	アマモの条件			
光量子量	純光合成光量 In=Id-Ic≧0M/㎡・day, In=Id-Ic(Id;水深d(m)の日積算光量, Ic;日積算補償光量) 水面直下の光量子量の10%			
透明度	透明度水深			
水温	8月の平均水温≦28℃			
塩分	17~34			
海底地形	透明度の2倍以内の水深水域が広域に存在			
波浪	シールズ数φ≦0.2 波高0.5m以下			
流速	60cm/s			
砂面変動	10cm以下			
底質	0.14mm≤d50≤0.39mm 細粒分30%以下			
	I.L. \leq 5%, COD \leq 10mg/g, T-S \leq 1mg/g			

表-1 MF21ガイドラインによるアマモ分布条件²⁾

再現しており、アマモ分布の最適な場所や群落の状況ま で評価した事例は少ない.

またHEPに用いるSIモデルは対象生物分布の各パラメ ーター別の大まかな分布包絡線を示したに過ぎず,HSI はこれを重ね合わせたものである.アマモ場が存在して いる場所は,その範囲内でも主な分布制限要因になる条 件が異なる場合や,各条件の相互関係が影響してアマモ の被度や草丈が変化することが考えられる.そして,こ れらの関係はそれぞれのパラメーターの区間ごとに変化 してゆくことも考えられる.

図-1 使用データの取得地点注1)により(物)

図-2 アマモ調査メッシュ

そこで、HEPにおけるSIモデルに相当する、各種パラメ ーターとアマモの有無のみならず被度や草丈との関係に ついて、AI手法により任意に分割した範囲で最も相関が 高い部分を試行錯誤的に繰り返し、各条件別のアマモ分 布状況を抽出し、アマモ分布状況の再現を試みた.

2. 使用したデータ

この検討では過去に図-1に示す千葉県富津市地先で 実施された物理量数値計算結果と同一計算メッシュのア マモ分布状況を調査したデータを用いた⁵.

物理的条件は図-2 に示す調査地点の岸沖方向480m汀 線平行方向640mについて10m×10mの計算メッシュを 設定し,波浪条件は当該海域の未超過確率90%に相当 するH_{1/3}=1.0m, S=4sを与え、3次元海浜変形予測モデ ルにより再現計算した波高・海浜流・シールズ数・地形 変化量を用いた.これらの平面分布を図-3に示す.

アマモ分布の情報は、1990年12月,1991年1月の衰 退期と1991年6月の繁茂期に、再現計算範囲内のうち 岸沖方向160m汀線平行方向260mで実施した潜水調査 結果を用いた.この調査では10m四方の計算メッシュ の中心に2m四方のコドラートを配置し、その内部の被 度・草丈の状況を10m四方のメッシュの情報としてい る.アマモ被度は図-4に示すブロン・ブロンケによる 全数推定法による被度階級ので表されていた.この被度 階級を既存文献の参考に、被度5から2は被覆面積を

示す範囲(%)を単純平均したものを各被度階級の被覆 面積の代表値(%)として設定し、被度1,+,および rは、被覆面積割合と観察者の主観により設定して数値 化した(図-5).

図-5 ブロン・ブロンケによる被度階級の定量化

表-2 重回帰式の偏回帰係数および相関係数

	被度		草丈	
説明変数	夏季	冬季	夏季	冬季
水深 (m)	-2.245	-0.041	-0.199	-0.058
細粒分(%)	0.032	-0.029	0.013	0.000
海浜流速 (m/sec)	0.109	0.004	0.007	0.003
シールズ数	-9.961	-1.211	-0.862	-0.325
地形変化 (cm/day)	0.015	-0.002	0.001	0.000
波高 (m)	8.769	-0.134	0.577	0.197
定数項	5.848	1.390	0.633	0.236
重相関係数(R)	0.159	0.078	0.259	0.204
P < 0.01	0.01 < P < 0.05		P > 0.05	

3. パラメーター寄与率の検討

調査範囲内のアマモ分布を再現するため,各種の条件 を用いて,目的変数をアマモ被度および草丈として,重 回帰分析を行った.目的変数は正規分布をとる連続変数 でなければならないが,被度や草丈は必ずしも正規分布 をしていないが,どの説明変数がアマモ分布に寄与して いるかを評価することは可能と考えた.説明変数には外 力条件の他に,水深(T.P.=0.0m)と,岸沖方向で変化が見 られた底質中のシルト以下含有割合(%)を用いた.

計算範囲内のアマモ分布が見られない部分も含んで水 深、シルト以下割合、波高、海浜流速、シールズ数、地 形変化量を説明変数に、夏季と冬季の被度および草丈を 目的変数として重回帰式を求めた.それぞれの変数ごと の偏回帰係数および回帰式の相関係数を**表-2**に示す.

回帰式の当てはめは極めて低く,最も重回帰係数Rが 大きな夏季草丈を示す重回帰式でも図-6に示すように計 算値と実測値のプロットは大きく乖離しており,この回 帰式を用いた場合の草丈分布の平面的再現結果も,図-7 に示すように測定結果を再現していない.このため,通 常の重回帰式ではアマモの分布は再現できないと考えら れた.

図-7 重回帰式によるアマモ草丈分布の再現

4. 遺伝的アルゴリズムによるパラメーター の評価と分布の再現

(1) 遺伝的アルゴリズムを用いた方法の概要

HEP における SI モデルは、対象生物分布の各パラメ ーターで HSI はこれを重ね合わせたものであるが、ここ ではこれを参考にアマモの草丈や被度 $F(x_1, x_2, \cdots x_n)$ に 対し SI モデルのように各パラメーターの寄与度の関数 $f_i(x_i)$ を重ね合わせることで直接的に推定するモデルを 考えた.

$$F(x_1, x_2, \cdots x_n) = \sum_{i=1}^n \alpha_i f_i(x_i) \tag{1}$$

ここで、 $F(x_1, x_2, \dots x_n)$ はアマモの草丈または被度の推 定値、 $f_i(x_i)$ はi番目の物理環境 x_i の寄与度を表す関数で SI モデルを参考に折れ線関数を用いた.なお、

 $F(x_1, x_2, \dots x_n)$ は、草丈や被度としてとり得る値の範囲 となるよう補正をした. α_i は *i* 番目の物理環境パラメー ターの重みである. 折れ線関数は、各環境バラメーター の出現する範囲を複数に分割し、その区間を連続の線形 関数でつなげたもので、複雑な形状を表現できる関数で あることを図-8 のイメージ図で示す.

各区間毎の折れ線の線形関数は、次式とする.

$$f_i(x_i) = a_{i,j} (x_{i,j} - L_{i,j}) + b_{i,j}$$
(2)

ここで、 $L_{i,j}$ は物理環境 x_i をm区画に分割したときの境界 値である. $b_{i,j}$ は、j番目の境界値 $L_{i,j}$ における $f_i(x_i)$ の値 で、 x_i がある区画内 $L_{i,j} \le x_i < L_{i,j+1}$ ($j = 1, 2, \cdots, m$)に あるとき傾き $a_{i,j}$ は、

$$a_{i,j} = \frac{b_{i,j+1} - b_{i,j}}{L_{i,j+1} - L_{i,j}} \tag{3}$$

となる.この折れ線関数は、任意の区画ごとに異なる関数を組み合わせているので重回帰分析などの一般的な方法で係数を決定することができない.このため、ここでは最適化のために多く用いられている遺伝的アルゴリズムを用いて係数を決定した⁸.

遺伝的アルゴリズムは、遺伝子の進化を模擬して最適 化を進める方法で、図-8 に示したように折れ線関数を 4 区画に分割し、その 5 つの節点の値b_{i,j}を 0 と 1 の羅列で 表しこれを遺伝子情報として扱う.1 つ節点の値を-100~ 100 の範囲とし、10 個の 0 または 1 で与える.節点数が 5 つなので 1 つのパラメーターを表す折れ線関数は 50 個 の 0 または 1 で表される.アマモの草丈や被度は、重回帰 分析の場合と同様に 6 つのパラメーターを用いて表すの で 300 個の 0 または 1 の数字の羅列を遺伝子情報と考え る.これに 6 つのパラメーターそれぞれの重みの情報を加 えて 360 個の数字の羅列を 1 組の遺伝子情報として扱う. なお、各パラメーターの区画を決めるL_{i,j}は、そのパラメ ーターの実測値の範囲内で扱うデータ数が各区画で同等 となるよう決めている.

この数字の羅列を遺伝子の進化を模擬した手順で変化 させ、設定した評価基準に対してよりよく適合する数字 の組み合わせを求めていく.

進化の手順は、始めにランダムに与えた 360 個の 0 ま たは1を20 組用意し、これを1セットとし、それぞれに 実測値として草丈や被度が確認されている地点のデータ にそれ以外の確認されていない地点を草丈や被度の値を 0としてデータに加えた 562 地点の 6 つのパラメーター のデータセットを当てはめる.推定された草丈または被 度の値と実測値を比較し、誤差の大小でランクをつける. このとき、下位2 組を捨て、上位2 組の遺伝子情報の一 部を交換(交配)して出来た2 組の遺伝子と置き換える. また、ランダムに選択する1 組について、遺伝子情報の 一部の0と1を入れ替える「突然変異」をさせることで

次の世代の20組を作成する.これを繰り返すことで, 誤 差の小さい折れ線関数が求められて行く.このように遺 伝的アルゴリズムによって得られる結果は, 偶発的な試 行によるものなので, 必ず最適解が得られるわけではな

図-9 繰り返しによる誤算の変化

い. 今回は、10万回の世代交代をさせた中で、最も誤差の小さかった結果で折れ線関数を決定した.

図-9 に繰り返し過程における平均誤差の変化を示す. 5 千~1 万回程度で誤差が大きく減少した後は少しずつ 誤差の低下がみられるものの10万回 までの繰り返しで 大きな改善が見られなかったので繰り返し回数はここま でとした.図-10に繰り返し回数1千,5千,1万,5万 回の草丈の平面分布を示す.進化を繰り返すことで徐々 に実測値に近いものに変化していることが分かる.

(2) 平面分布の再現結果

10 万回の繰り返し結果から得られた草丈の平面分布 と実測値の比較を図-11 に、被度の比較を図-12 に示す. 草丈および被度ともに推定値は過少評価傾向にあるが、 平面的な分布傾向についてはおおよそ再現できていると 考える.夏季に比べ冬季の分布範囲が減少している傾向

図-12 アマモ被度平面分布の比較

も表現できている.また、草丈については、分布範囲の 再現だけでなく草丈の長短の平面的な傾向についても表 現できていることが、本モデルの利点である.なお、草 丈に比べ被度の再現性は劣っている.

草丈および被度の推定値と実測値の相関を確認したものを図-13 に示す.現地データが限定的であることや現地と数値解析の平面的な一致の限界を考慮して,3メッシュ四方の9個のデータごとにその範囲の平均値で比較している.この結果からも被度に比べ草丈の方が再現性が良く,冬季より夏季の方が良かった.最も再現性が良

(a) 草丈の推定値と実測値との相関

(b) 被度の推定値と実測値との相関図-13 アマモ被度平面分布の比較

かった夏季の草丈では、推定値は実測値より小さい傾向 のデータはあるものの、ほぼ同等の値として推定された データもあり、相関係数が 0.86 となった.一方、データ の情報量が少ない冬季の被度は相関係数 0.17 であった.

今回の手法による推定結果は現地結果との定量的な再 現は十分とは言えないものの,定性的には現地を再現で きていると考える.

(3) 各パラメーターの寄与率の評価

ここでは、先の平面分布の算出に使用した各パラメー ターの寄与度を表す関数を確認することで、アマモの草 丈や被度と物理的環境との関係について考察する.

図-14 に物理環境の各パラメーターを横軸にして,夏季および冬季の草丈および被度への寄与を表す折れ線関数(式(2))に重みを考慮して示した.この結果は,限られたデータに戻づく当てはめであり,パラメーターの影響を正しく評価できているかについては不確定ではあるが,平面分布がある程度評価できていることを考えると参考にはなると思われる.

被度の再現性は、草丈に比べ劣っていたが各パラメー ターの寄与関数の傾向は大きくは変わらない.水深や波 高、細粒分割合、シールズ数の寄与関数は明瞭でないも のもあるが単一のピークを持ち、各パラメーターともに 寄与が大きい範囲は限定的であると見える.また、地形 変化については、堆積傾向の場所の方が侵食傾向の場所

に比べて寄与度が大きい傾向が確認できる.一方で,海 浜流については,明瞭なピークは見られず全体的に寄与 度は低い傾向にある.

5. まとめ

アマモの草丈や被度を SI モデルに類似した物理環境 の折れ線関数の組み合わせで評価できると仮定し、その 関数を遺伝的アルゴリズムを用いて推定した.

従来のように、各パラメーター別のアマモが分布する 範囲を重ねあわせると、図-15 に示すように実測による アマモ分布範囲を概略的には再現することができる⁵⁰. しかし、その範囲内での群落密度や草丈を表すことはで きない. HSI モデルでは分布の状況を 0~1 の間で基準化 するので、群落状況も再現できることになっているが、 的確な再現は困難である.

今回用いた遺伝的アルゴリズムを用いる計算方法では 各パラメーターの平面分布を実測あるいは計算により明 らかにすれば、人為的に SI モデルを作ることなく各パラ メータごとの海草分布の関数を自動算出し、設定できる. また、今回のような限られた情報でも平面分布や各パラ メーターの寄与程度について結果が得られたことは、本 手法の可能性を示すことができたと言える.

また、実務への適用を考えると、光透過量、塩分等の

同一の水質である海域が対象になる.このような場所の, 港湾等であれば,波浪や底質などの物理的条件が明らか になっていることも多く,可能な範囲で点的なアマモ分 布状況を計測すれば、本手法を用いてその面的な状況を 大まかに表すことができる.

対象とする海域ごとに関数を求める必要はあるが,現 在アマモ等の海草が分布している小湾や港湾内で,浅場 造成などにより海草群落を拡大させる場合の計画に活用 することができると考えた.

NOTES

注1) 海上保安庁「海洋状況表示システム」(海しる) https://www.msil.go.jp/msil/htm/topwindow.html

REFERENCES

- 堀 正和:ブルーカーボンを利用した気候変動の緩和 適応策の実践-海藻草場を利用した増養殖の展開,日 本水産工学会誌,56巻,3号,pp.197-200,2020. [Masakazu, H.: Implementation of Climate Change Mitigation and Adaptation Measures Using Blue Carbon – Development of Aquaculture Using Macrophyte Vegetation, *Fisheries Engineering*, Vol,56, No.3, pp.197-200, 2020.]
- マリノフォーラム 21: アマモ類の自然再生ガイドライン, pp.3_6-3_12, 2007. [Marino Forum 21: *Amamo rui no Shizen Saisei Gaidorain*, pp. 3_6-3_12,2006.]
- 高山 百合子,小林 昭男,国分 秀樹:英虞湾の干潟・ アマモ場再生実験データに基づいたHSIモデルによる 干潟生物環境評価,海岸工学論文集,54巻,pp.1256-1260,2007.[Yuriko, T.,Akio, K., and Hideki, K., Assessment for Habitat of Benthos Class by HSI Model based on Field Study of Regeneration of Tidal Flat and Eelgrass Zone

in Ago Bay, *Proceedings of Coastal Engineering, Japan Society of Civil Engineers*, Vol.54, pp. 1256-1260,2007.]

- 増田龍哉,鳥居洋,飯尾昌和,矢北孝一,上久保 祐志,滝川清,八代海野坂の浦における HSI モデルを用いたアマモの生育環境評価,土木学会論文集 B3 (海洋開発),71巻,2号,pp. I_921-I_926,2015. [Tatsuya, M., Hiroshi, T., Masakazu, I., Kouichi, Y., Yuuji, K., and Kiyoshi, T. :Growth Environment Evaluation of Eelgrass by Habitat Suitable Index Model in the Yatsushiro Bay "Nosa-kanoura", *Journbal of Japan Sochiety of Civil Engineers*, *Ser.B3, Ocean Engeneering*, Vol.71, No.2, pp. I_921-I_926,2015.]
- 5) 中瀬 浩太,田中裕一,檜山博昭:海浜変形予測手法を用 いたアマモ場成立条件に関する研究,海岸工学論文集, 39巻,1006-1010,1992. [Nakase, K. Tanaka, U. and Hiyama, H..: Research on conditions for formation of eelgrass beds using beach deformation prediction method, Proceedings of Coastal Engineering of the Japan Society of Civil Engineers, Vol. 39 (2) 1968, Issue 202, pp. 1006-1010, 1992.]
- 中西 哲,大場達之,武田義明,服部 保:日本の植生図鑑
 <I>森林, pp.168,保育社,1983. [Nakanishi, T., Ooba

T., Takeda, Y. and Hattori, T. : *Nihon no Shokusei zukan* < *I* >*Shinrin*, pp. 168, Hoikusha, 1983.]

- 7) 星野 義延: 種多様性算出のためのBraun-Blanquetの優占度 階級値のパーセント被度値への変換方法,環境科学会誌, Vol.4, No.3, pp.193-205,1991. [Hoshino, Y.: Transformation from the Braun-Blanquet Cover-Abundance Scale to Percentage Cover for the Calculation of Species Diversity, *Environmental Science*, Vol.4, No.3, pp.193-205,1991.]
- 8) 鵜飼亮行,村上智一,水谷 晃,中瀬浩太,下川信也, 河野裕美:西表島網取湾内の物理環境情報を用いたサ ンゴ被度平面分布推定方法の開発,土木学会論文集 B3(海洋開発),Vol.71,No.2,I_963-I_968,2015.[Ukai,A. Murakami,T. Mizutani,A. Nakase,K. Shimokawa,S. and Kohno,H.: Estimation technique of spatial coral distribution in Amitori bay, Iriomote island, Japan, *Journal of Japan Society of Civil Engineers*, Ser. B3 (Ocean Engineering). 2015, Vol.71, No.2, p.I_963.]

(Received February 9, 2023) (Accepted May 11, 2023)

REPRODUCTION OF EELGRASS DISTRIBUTION BASED ON PHYSICAL CONDITIONS USING GENETIC ALGORITHM

Kota NAKASE and Akiyuki UKAI

Suitable sites for eelgrass can be evaluated from the range of parameters such as depth and Shields number. Using existing data where the eelgrass distribution and physical conditions in the same mesh, line graphs for each parameter for coverage and leaf length, and regarded HSI number string as a set of genetic information. Although the coverage and leaf length distribution could be reproduced qualitatively by 100,000 trials, there were many eelgrasses non-distribution areas, and quantitative problems were observed in the coverage and leaf length.