ポリプロピレン製短繊維を用いた高強度コンクリート柱の

耐火性確保に関する報告

山田 修大* 靏見 淳也*

李 暁赫*

要 旨

近年、集合住宅を中心に鉄筋コンクリート造建築物の高層化が進み、設計基準強度 80~150N/mm²の 高強度コンクリートの需要が増大している。しかし、高強度コンクリートは通常のコンクリートに比べ、火災 時に爆裂現象が起こりやすいという課題がある。この爆裂現象の抑制方法として、コンクリートにポリプロ ピレン製短繊維(以下、PP 繊維)を混入する方法が一般的に知られている。PP 繊維を用いた高強度コン クリート柱の耐火性についてはすでに報告されており、当社では簡易的な試験を行い、径 41 µm、長さ 12mm の PP 繊維を用いた高強度コンクリートの耐火性を評価している。そこで本検討では、径 41 µm、 長さ 12mm の PP 繊維を用いた高強度コンクリートを対象とし、荷重が作用した状態での耐火性を確 認することを目的として載荷加熱試験を実施した。本報では、その結果について報告する。

1. はじめに

近年、集合住宅を中心に鉄筋コンクリート造建築物の高層化 が進み、設計基準強度 80~150N/mm²(以下、Fc80~150)の高 強度コンクリートの需要が増大している。しかし、高強度コンクリ ートは通常のコンクリートに比べ、火災時に爆裂現象が起こりや すいという課題がある。この爆裂現象を抑制する方法として、コン クリートにポリプロピレン製短繊維(以下、PP 繊維)を混入すること が一般的に知られている ¹。これは、PP 繊維が高温により消失し て空洞を形成し、爆裂の原因とされる水蒸気圧や熱応力を緩和 させるものと考えられている。PP 繊維を用いた高強度コンクリート 柱の耐火性についてはすでに報告されており^{602,tf 2-4}、その長さ や径、混入量によって爆裂現象を抑制する効果が異なることなど が示されている。当社では、これまでに断面形状や長さ、混入量 を変化させた高強度コンクリートの耐火性能について、簡易的な 試験を行い評価し、径 41 µm、長さ 12mm の PP 繊維の有効性 を確認している⁵。

そこで本検討では、同仕様の PP 繊維を混入した Fc80、Fc120 および Fc150 の高強度コンクリート柱を対象とし、荷重が作用し た状態での耐火性を確認することを目的として載荷加熱試験を 実施した。本報では、その結果について報告する。

2. 試験体

2.1 使用材料

(1) コンクリート

各試験体のコンクリートの使用材料を表-1~表-3に示す。 セメントは、Fc80 に中庸熱ポルトランドセメント、Fc120 および Fc150 にシリカフューム混合セメントを使用した。

* 技術研究所 建築技術開発部

表-1 コンクリート使用材料(Fc80)

		1		19194 (1000)		
名称	記号		種類	備考		
セメント	М		中庸熱 ポルトランドセメント	_		
如四十十	S1		砂	砂:砕砂=50:50		
和"月"12	2	S2	砕砂	(質量比)		
粗骨材	G		石灰岩砕石 2005	—		
混和材	PP		ポリプロピレン製短繊維	繊維径:41μm、長さ:12mm 密度:0.91g/cm ³		
混和剤	∬ SP		SP		高性能 AE 減水剤	ポリカルボン酸 エーテル系化合物

表-2 コンクリート使用材料(Fc120)

名称	記号	種類	備考		
セメント	SFC	シリカフューム混合セメント	—		
細骨材	S	山砂	—		
粗骨材	G	硬質砂岩砕石 2005	—		
混和材	DD	ポリプロピレン制領繊維	繊維径:41μm、長さ:12mm		
1551.042	11	ハリノロビレン 衣心城市	密度:0.91g/cm ³		
泪毛动	CD	古叶织 ME 建水刘	ポリカルボン酸		
邱们们	SP	向性距 AE 砜 小剤	エーテル系化合物		

表-3 コンクリート使用材料(Fc150)

名称	記号	種類	備考	
セメント	SFC	シリカフューム混合セメント	—	
細骨材	S	硬質砂岩砕砂	—	
粗骨材	G	硬質砂岩砕石 2005	—	
混和材	РР	ポリプロピレン製短繊維	繊維径:41μm、長さ:12mm 密度:0.91g/cm ³	
混和剤	SP	高性能 AE 減水剤	ポリカルボン酸 エーテル系化合物	

23 - 1

(2) 鉄筋

各試験体に用いた鉄筋および配筋要領を表-4に示す。

2.2 コンクリートの調合

各試験体に用いたコンクリートの調合を表-5に示す。PP 繊 維の混入量は過去に実施した簡易耐火試験等 ⁵⁰の結果を参考 に設定し、Fc80、Fc120、Fc150 に対しそれぞれ 0.15、0.20、 0.25vol%とした。

2.3 試験体の形状および寸法

(1) 載荷加熱試験用の柱試験体

試験体は、表-4に示した鉄筋と、表-5に示した調合のコン クリートを用いて製作した。試験体の形状および寸法、配筋と温 度測定位置を図-1に示す。試験体の断面は載荷軸力を考慮し、 400mm×400mmとした。また、試験体の高さ(長さ)は試験装置 に合わせて、Fc80は3,300mm(加熱区間2,950mm)、Fc120およ びFc150は3,500mm(加熱区間3,000mm)とした。

試験体内部の温度を測定する熱電対(K型)は、図-1に示す 位置に同一断面でコンクリート温度測定用 7 箇所、鉄筋温度測 定用 4 箇所を設置し、高さ方向に 3 断面(コンクリート:7 箇所×3 断面=21 箇所、鉄筋:4 箇所×3 断面=12 箇所、合計 33 箇所)設 置し、それぞれの温度を測定した。試験体は屋外にて打込み後、 1 週間(Fc80 のみ 2 週間)で型枠を脱型し、その後は試験日まで 温湿度非制御の屋内で気中養生を行った。

(2) 圧縮強度・含水率測定用の模擬試験体

圧縮強度および含水率の測定に用いた模擬試験体の概要を 図-2に示す。模擬試験体は、図-1に示す柱試験体と同時に 製作し、同一の環境下で養生を行った。圧縮強度の測定は材齢 91日および載荷加熱試験日用の2本の模擬試験体からそれぞ れ切り出した4本ずつのコア供試体を用いた。含水率の測定に は角柱供試体を用いた。含水率は、角柱供試体の乾燥前質量 (W_w)と105℃乾燥後質量(W_d)から、以下の式(1)により求めた。

含水率(%)=(
$$W_w - W_d$$
) / $W_d \times 100$ (1)

3. 試験方法

3.1 載荷·加熱方法

載荷加熱試験に用いた試験装置と軸方向収縮量の測定位置 を図-3、4に示す。Fc80 では試験装置 A を、Fc120 および Fc150 では試験装置 Bを用いた。

軸力比は 0.33 (設計基準強度/3)とし、試験体への載荷を行った。載荷は、加熱開始から加熱が終了し、試験体の温度が低下するまで継続した。加熱は ISO-834 に規定される標準加熱曲線による 3 時間加熱とした。温度測定は、加熱終了後、各測定点の温度が最高温度を記録し、低下することを確認するまで継続した。

3.2 評価方法

載荷加熱試験における試験体の耐火性能の評価基準を表-6に示す。

表-4 使用鉄筋および配筋要領

試験体	主筋	せん断補強筋	鉄筋比 Pg	せん断補強筋比 Pw
Fc80	12-D19 (SD490)	4-D10@90 (SHD685)	2.15%	0.79%
Fc120	12-D19 (SD490)	4-U9.0@80(SBPD1275)	2.15%	0.80%
Fc150	12-D19 (USD685)	4-U9.0@80(SBPD1275)	2.15%	0.80%

表-5 調合

	W/C (%)	C s/a) (%)	畄位島							
試験体			(a) W	(C	5	5	C	SP	PP*
				М	SFC	S1	S2	G	(C ^ 70)	(v01%)
Fc80	24.0	42.4	170	709	—	325	325	915	適宜	0.15
Fc120	15.2	34.7	160	—	1053	43	35	824	適宜	0.20
Fc150	12.6	23.5	160	—	1270	25	50	824	適宜	0.25

*容積に対して外割りで使用

表-6 柱の耐火性能に関する評価基準						
試験体	最大軸方向収縮量 ^{*1} (mm)	最大軸方向収縮速度*2 (mm/分)				
Fc80	33.0以下	9.9 以下				
Fc120	35.0以下	10.5 以下				
Fc150	35.0以下	10.5 以下				

*1 最大軸方向収縮量(mm):試験体の全長×1/100

*2 最大軸方向収縮速度(mm/分):試験体の全長×3/1000

図-4 載荷加熱装置(試験装置B)

4. 実験結果

4.1 コンクリートにおける各試験の結果

コンクリートにおける各種試験結果を表-7に示す。各試験体 の材齢 91 日および載荷加熱試験日の圧縮強度は設計基準強 度を上回っていることが確認できた。

4.2 加熱時の試験体の状況

各試験体の載荷加熱試験時において測定した炉内の平均温 度と標準加熱曲線を図-5に示す。また、載荷加熱試験後の各 試験体の状況を写真-1に示す。爆裂現象(一部剥離)の発生は、 Fc80 で加熱開始11分から13分まで、Fc120で9分から19分 まで、Fc150 で 12 分から 18 分までみられたが、それ以降はみ られなかった。また、剥離の深さはいずれの試験体においても 10~20mm となり、せん断補強筋の露出はみられなかった。こ れらのことから、各試験体の爆裂現象(一部剥離)の発生状況に は大差がないことがいえる。

以上より、簡易耐火試験等の結果を参考に設定した PP 繊維 の混入量は、各設計基準強度の高強度コンクリートの爆裂現象 の抑制に対して適切であったと考えられる。

4.3 コンクリートおよび鉄筋の温度測定結果

各試験体表層からの距離毎のコンクリートおよび鉄筋の最高 温度を図-6~図-8に示す。なお、図中の平面部が図-1に

表-7 コンクリートにおける各試験の結果

	フレッシュコン	·クリート	試験	圧縮強	今十 本*4	
試験体	スランプフロー	空気量	CT	材齢	載荷加熱試験	百小平
	平均值(cm)	(%)	(°C)	91 日	日の材齢*3	(70)
Fc80	63.5	2.6	24	98.1	110	4.2(17)
Fc120	64.0	1.9	21	150	164	4.9(10)
Fc150	61.5	3.3	24	157*2	178	2.7(19)

*1 4本のコア供試体により測定した圧縮強度の平均値

*2 材齢90日の試験結果

*3 Fc80:材齢 237 日 Fc120:材齢 265 日 Fc150:材齢 188 日

*4 表中の()内は105℃で試験体の質量変化がなくなるまでの乾燥日数

Fc80 Fc120 Fc150 写真-1 載荷加熱試験後の各試験体

示している C1~C4 と S1、S2、隅角部が C5~C7 と S3、S4 で測 定された最高温度を表している。いずれの試験体においても、 鉄筋とコンクリートの温度がほぼ同程度であるため、以降の考察 では、表層からの距離と鉄筋およびコンクリートの温度の関係は 同一であるものとした。

設計基準強度と最高温度の関係をみると、表層から 50mm 付 近における平面部では Fc80>Fc120>Fc150 の関係となってい るものの、隅角部では設計基準強度にかかわらず 3 体とも概ね 同等だった。また、表層から 100mm までの範囲では、表層から の距離が大きくなるほど最高温度が低くなっているのに対し、 100mm 以降は変化がみられない。コンクリートおよび鉄筋の温 度が 500℃を超えると、加熱後の残存強度や弾性係数が大幅に 低下しの、再使用する場合は柱の補修が必要になることから、各

図-6 コンクリートおよび鉄筋の最高温度(Fc80)

図-8 コンクリートおよび鉄筋の最高温度(Fc150)

試験体における鉄筋の温度を500℃以下に抑えるために必要な 表層からの距離(かぶり厚さ)を図ー6~図ー8中および表-8に 示す。なお、ここでのかぶり厚さは、上段、中段、下段における 測定値のうち、温度が500℃になった時点で最も表層からの距離 が大きい値を示している。隅角部において必要なかぶり厚さは 3 体とも概ね同等であるが、平面部については設計基準強度が高 いほど 500℃以下に抑えるために必要なかぶり厚さが小さくなる 傾向にあった。

4.4 軸方向収縮量および収縮速度の測定結果

各試験体に関して測定した軸方向収縮量の測定値を図-9に、 軸方向収縮速度の測定値を図-10に示す。また、本実験では 試験体の長さがそれぞれ異なるため、各試験体の結果の比較を 行うために、試験体全長に対する収縮量または収縮速度の比率 を算出した。算出結果を、図-11、12に示す。試験体の収縮量 および収縮速度の比率は、Fc80<Fc120≒Fc150の関係になっ ている。設計基準強度が高いほど収縮量と収縮速度の比率が大 きくなる傾向にあるものの、全ての試験体において表-6に示し た基準値以下を確保している。このことから、簡易耐火試験等の 結果を参考に設定した量の繊維を混入させた柱は、火災による 破壊その他の損傷を生じない性能(非損傷性)を有することを確 認した。

表-8 必要なかぶり厚さ

3.5万人 4-	かぶ	0厚さ	
試験体	平面部	隅角部	
Fc80	約 70mm	約 90mm	
Fc120	約 60mm	約 90mm	
Fc150	約 50mm	約 85mm	

5. 設計基準強度ごとの PP 繊維混入量

これまで検討してきた結果より、Fc80以上 Fc150以下の高強 度コンクリートの爆裂抑制対策として必要な PP 繊維の混入量は **表-9**に示すとおりとして設定した。

6. まとめ

本実験では、径 41 μ m、長さ 12mm の PP 繊維を使用し、混 入量を Fc80 で 0.15vol%、Fc120 で 0.20vol%、Fc150 で 0.25vol% とした高強度コンクリート柱に対して、軸力比を計画段階におい て 0.33 (設計基準強度/3)として、それぞれの耐火性能を確認し た。実験結果から、本検討の範囲内で、以下の知見が得られた。

(1)爆裂性状

いずれの試験体においても加熱開始10分前後から表層の剥離(一部爆裂)が始まったものの、加熱開始約20分まで継続し、 その後はみられなかった。このことから、本報で使用した繊維の 種類および混入量は、各設計基準強度の高強度コンクリートの 爆裂現象の抑制に対して適切であったと考えられる。

(2)温度性状

設計基準強度が高いほど、表層から50mm付近における平面 部の温度は低く、鉄筋およびコンクリートの温度を 500℃以内に 抑えるために平面部に必要なかぶり厚さは小さくなる傾向にある。

(3)軸方向収縮量および収縮速度

設計基準強度が高いほど収縮量と収縮速度が大きくなる傾向 にあるものの、全ての試験体において基準値以下を確保してい た。

図-12 試験体全長に対する軸方向収縮速度の比率

表-9 設計基準強度ごとの PP 繊維の混入量

	設計基準強度 Fc(N/mm ²)					
	Fc=80	$80 \! < \! \mathrm{Fc} \! \le \! 120$	$120 \! < \! Fc \! \le \! 150$			
PP 繊維の	0.15vol%	0.20vol%	0.25vol%			
混入量	[1.365kg/m ³]	[1.820kg/m ³]	[2.275kg/m ³]			

このことから、簡易耐火試験等の結果を参考に設定した量の繊 維を混入させた柱は、火災による破壊その他の損傷を生じない 性能(非損傷性)を有することを確認した。

【参考文献】

- 1) 日本建築学会:高強度コンクリート施工指針・同解説, 2013.11
- 2) 松戸正士,吉野茂,若松高志,近藤悟,佐々木仁,平島岳夫,吉田 正友,上杉英樹,斎藤光ほか:超高強度材料を用いた鉄筋コン クリート柱の耐火性に関する研究 その 1~2,日本建築学会大 会学術講演梗概集, 2002.8
- 藤中英生,三井健郎,米澤敏男,古平章夫:ポリプロピレン繊維 を混入した高強度 RC 柱の耐火性能,日本火災学会論文集, vol.54, No.1, pp.17-23, 2004
- 丹波博則,瀬川紘史,一瀬賢一,津田和明,長沼一洋: Fc80~180N/mm²級高強度コンクリートを用いた RC 柱の耐火 性能 その 1~2,日本建築学会大会学術講演梗概集 A-2,pp.253-256,2008
- 5) 竹内博幸,髙橋祐一,山本基由:簡易耐火試験による超高強 度コンクリート爆裂対策の検討,コンクリート工学年次論文 集, vol.34, No.1, 2012
- 6) 一瀬賢一,長尾覚博,川口徹:高温加熱下における高強度コンクリートの力学的性質に関する研究,コンクリート工学年次論文報告集,vol.21, No.2, 1999