波浪作用下における底泥の圧密挙動に関する実験的研究

Experimental Study on Consolidation of Bottom Mud under Wave Action

熊谷隆宏¹·土田 孝²·安部太紀³·菊原紀子⁴

Takahiro KUMAGAI, Takashi TSUCHIDA, Taiki ABE and Noriko KIKUHARA

In the case where soft bottom mud with high water content over the liquid limit is fluidized by wave-induced pressure, cracks are generated in the surface of the mud. Focusing on the generation of cracks in the mud, a laboratory experiment on the consolidation of soft mud under wave action has been conducted. The characteristics of development of cracks to deeper area are investigated in terms of wave height and occurrence global slip-failure in the mud layer. It is elucidated that consolidation of soft mud is promoted remarkably under wave action because excess pore-water pressure tends to be accumulated around the tips of cracks by wave-induced repetitive shear stress and the pressure dissipates promptly by the drain effect of cracks. Also, the washout of fine particles from deep area of mud has been examined.

1. はじめに

河川から河口域に運搬され、フロック(凝集体)を形 成して沈降・堆積したシルトや粘土の微細粒子は、静穏 時に沈降・堆積が進行する一方,波や流れの撹乱作用時 には、巻き上がり、浮遊移動する.海底面を強く撹乱す る高波浪の発生が少ない閉鎖性水域では、巻き上がる量 に比べて沈降する量が大きく、海底に高含水比の底泥が 堆積していくとともに、波や流れの作用、塩分濃度・水 温の変化、生物遺骸の沈殿など各種の複雑な環境の影響 の下で、長期的に圧密されて地盤が形成される.

波による底泥の巻き上げ特性の解明に向けて, 例えば, 三村ら(1989, 1990)は、カオリン泥とベントナイト泥 について, 含水比が液性限界以上にある場合の底面せん 断応力と巻き上げ・沈降フラックスの関係を調査し、各 底泥グループに対して,巻き上げフラックスの評価式を 提案している.また、土田・五明(1999)は、波浪作用 に対して底泥が安定する条件を地盤の安定解析の手法を 用いて誘導するとともに、底泥の圧密に関する水理実験 を行い、波の作用により底泥層が亀裂の発生を伴いなが ら流動化する場合に,底泥層内で局所的に含水比が大き く低下する特性が現れることを示している. さらに, 熊 谷ら(2007)は、底泥の流動化に伴う亀裂の発生に着目 し、スメクタイトを含む底泥では、亀裂周囲の粘土部は 性状を保持しながら, 亀裂が深度方向に発達していく傾 向のある延性的な破壊形態が現れることを示すととも に, 亀裂が有する排水促進効果(ドレーン効果)により

1	正会員	Ph.D.	五洋建設(株)技術研究所
2	正会員	工博	広島大学大学院工学研究科教授
3	学生会員		広島大学大学院工学研究科
4	正会員	修(環)	五洋建設(株)技術研究所
4	正云貝	修(垛)	五件建設 (林) 按附研究所

底泥の圧密が促進される特性を明らかにしている.

本研究では、波浪作用によって底泥に亀裂が発生する 条件に関して詳細な実験を行い、亀裂の発達特性を調べ るとともに、底泥内における過剰間隙水圧の応答および 含水比の変化特性、底泥粒子の粗粒化特性を明らかにす ることにより、波浪作用下における底泥の圧密挙動を解 明することを目的とする.

2. 実験の概要

実験に用いる底泥試料として,徳山港の浚渫粘土を用 いた.ただし,実験では,小石や貝殻等を取り除いた後, 人工海水を用いて初期含水比を液性限界の1.5倍に相当 する165%に調整して用いた.このときの底泥の密度は 1,300kg/m³であり,実海域において表層に堆積し,自重 圧密過程にある高含水比の底泥の状態を想定している. 実験に用いた底泥粘土の主な物性値を表-1に示すととも に,図-1および図-2に,標準圧密試験より得られた圧密 特性を示す.さらに,ハンドベーン試験によって得られ た含水比とせん断強度の関係を図-3に示す.

波の作用下における底泥の圧密挙動を調べるために, 長さ10m,幅0.3m,高さ0.4mの造波機能を持つ水槽に長 さ1.0m,深さ0.3mの土槽を取り付けた実験装置を用いた

表-1 粘土物性值

土粒子密度 ps	2620kg/m ³	
	砂分	4.5%
粒度組成	シルト分	46.0%
	粘土分	49.5%
	液性限界 wL	110.6%
コンシステンシー	塑性限界 wp	40.0%
	塑性指数 Ip	70.6

(図-4). 波浪条件として,水深を0.15mに設定し,波形 勾配が0.03程度となるように,波高0.04m,周期1.2s (Case1)および波高0.05m,周期1.4s (Case2)の規則波 条件を選定し,72時間にわたる波浪作用下の底泥圧密実 験を行った.実験期間中,図-4に示すように,土槽沖側 端から0.3mの位置において,底面から0.075m,0.150m, 0.225mの高さで間隙水圧変動を計測した.また,波浪作 用の有無による圧密特性の違いを調査するため,直径 0.3mのアクリル円筒を用いて,静水条件下の圧密実験を 併せて実施した.

3. 底泥の挙動および亀裂特性

実験で作用させる波浪条件に対して,底泥が不安定に なり,流動化が発生する限界せん断強度を土田・五明 (1999)の手法に基づいて評価すると,波高0.04m時には 0.86kN/m²,また波高0.05m時には1.03kN/m²となる.一 方,実験に用いた底泥の初期せん断強度は0.14kN/m²で あり,限界せん断強度に比べて十分に小さく,底泥の流 動化が大きく発生する条件であった.

実験において,底泥は波浪作用により直ちに流動化し,

(2) Case2(波高 0.05m) 写真-1 底泥の亀裂部から抽出した石膏の例

底泥表面が上昇・下降を周期的に繰り返す波動運動が現 れるとともに,波峰線と平行に亀裂が発生することが確 認された.

また,熊谷ら(2007)と同様の方法により,波浪作用 開始から5分経過後の状態において,亀裂内に石膏スラ リーを注入して亀裂深度の調査を行った.注入後,固化 した石膏片を抽出した例を写真-1に示すように,底泥表 面から視認することができない亀裂の深さは,抽出した 石膏片より推測することができる.波高が0.04mの条件 では,亀裂深さが0.015m程度で比較的浅いのに対し,波 高が0.05mの条件では0.06m程度の深い亀裂が生じてい ることが考えられる.

また,底泥表面から発達する亀裂とは別に,6時間程 度経過した後に,空間分布を持ち偏差荷重として作用す る底面波圧によって,底泥層内に大きなすべりが生じて いることが観察された.すべり面によって底泥の挙動は 分断され,流動化挙動は,すべり面の上部においてのみ 現れた.波高0.05m作用時に現れたすべり面を写真-2に 示すように,比重の異なる細かい貝殻片がすべり面に集 積していることからも,すべり面を挟んで底泥の挙動が 異なることがわかる.

波浪作用下における底泥粒子の挙動として,底泥面に 作用する波のせん断応力により巻き上げられるともに, 自重によって沈降する現象が現れる.Odd・Cooper

 (1989) や鶴谷ら(1994)は、沈降・堆積した軟弱な層のうち、非ニュートン流体的な挙動を示す高濃度な流動 層をFluid mudとし、その下の自重圧密過程にある層を Consolidating bedと区別している。

本研究の実験において、巻き上げられた後に沈降した 底泥粒子がFluid mud層を形成することが観察された. Case2の条件において、Fluid mudの層厚は5cm程度であ り、表層部1cmにおける密度は1,020kg/m³、また、下層 部1cmでは1,130kg/m³であった.Fluid mudの下層では密 度が高くなっており、Fluid mudがConsolidation bedに移 行していく過程がわかる.

4. 底泥の含水比変化特性

72時間にわたる波浪作用下の底泥圧密実験における実 験後の含水比の深度分布を図-5に示す. ここでは, Fluid mudを除く底泥を調査対象として、土槽沖側端から、 0.08m, 0.15m, 0.30m, 0.75mの位置で含水比の変化を調 査した.特に、前節の調査より底泥内に亀裂が深く形成 されていると推定されるCase2において、土田・五明 (1999) や土田ら (2005) の研究と同様に,特定の深度 で含水比が著しく低下する現象が現れている。このよう な含水比の著しい低下が現れる深度は、排水促進効果を 持つ亀裂の先端深度に概ね一致することが、熊谷ら (2007) によって明らかにされている. さらに、本研究 では、図-6に示すように、含水比が最も低下した深度と 底泥層内のすべり面の形成位置の比較を行い、含水比の 著しい低下が現れる深度は、すべり面が形成される深度 にも概ね一致することを明らかにした. すなわち、この 結果は、深さ方向への亀裂の発達は、底泥層のすべりに より制限されることを示唆するものである.

波浪作用条件下の圧密特性と比較するために,静水条 件下における自重圧密実験結果,および図-1の圧密試験 結果より評価される自重圧密完了時の含水比分布を図-7 に示す.ドレーン等による排水促進を行わず,底泥表面 のみを排水境界とする条件では,図-2の圧密特性より, 圧密が完了するまでに50日程度の期間が必要であると評 価される.また,静水時の自重圧密では,含水比の低下

は135%程度が限界であることがわかる. 波浪の作用に より亀裂が深く形成されたCase2の実験後の含水比は, 最大で110%程度と大きく低下しており,既往の研究で 報告されている亀裂の排水促進効果(ドレーン効果)だ けでは説明できない圧密挙動が現れていることがわかる.

土槽沖側端から0.30m離れた位置における底泥内の過 剰間隙水圧について, Case2の計測結果例を図-8に示す. 間隙水圧の基準として,波浪を作用させる直前の静水条 件においてゼロの値に設定した.また,図中の値は, 150波程度の波浪が作用する180秒間の移動平均値を示す ものである.底面から0.075m,0.150m,0.225mの高さで 計測した過剰間隙水圧のうち,特に,含水比の著しい低 下が現れる位置の周辺にあたる0.150mの高さにおいて, 顕著な過剰間隙水圧の蓄積と消散が繰り返し生じている ことがわかる.

亀裂周辺における過剰間隙水圧の挙動について, 熊谷 (2009)の弾塑性構成則に基づく地盤FEMモデルと数値 波動水路の連成モデルを用いて検討する. 解析では, 長 さ1.0m, 深さ0.3mの土槽に底泥が投入されている状態を モデル化する.また,底泥内の亀裂に関しては,土槽中 央部に,厚さ5mm,深さ0.15mの亀裂が初期条件として 形成されている簡易な状態でモデル化する.また,実験 で用いた165%の高含水比で非常に軟弱な底泥を表現す る物性値の一覧を表-2に示す.

Case2の波浪条件に対して,波浪作用下の底泥挙動を 解析した結果,図-9に示すように,亀裂の先端部周辺に おいて,せん断応力と過剰間隙水圧が大きく発生しやす い傾向があることが明らかになった.すなわち,実験に おいて現れた底泥内の過剰間隙水圧の著しい蓄積は,底 泥内に亀裂が形成されていることに起因すると考えられ る.また,亀裂が形成されている条件では,波浪の繰り 返しせん断作用により亀裂先端部の周辺で過剰間隙水圧 が蓄積される過程と,亀裂の排水促進効果によって過剰 間隙水圧が消散する過程が繰り返される中で,静水条件 下の自重圧密以上に圧密が促進されると考えられる.

なお,波浪が軟弱な底泥上を進行するとき,底面作用 圧が底泥運動を引き起こすため,波のエネルギーが減衰 する.波浪が進行とともに減衰していくことにより,底 泥の流動化や亀裂の形成が小さくなるため,岸側にある x=0.75mの地点においては,図-5において確認されるよ うに,沖側の地点に比べて圧密の促進が小さく,含水比

図-8 過剰間隙圧(180s移動平均値)の時間変化例(Case2)

表-2 VOF-弾塑性FEM連成解析で与える底泥の物性値

弾性係数 E(kN/m ²)	ポアソン 比v	水の体積 圧縮率 $\beta(kN/m^2)$	透水係数 k (cm/s)	粘着力 c _u (kN/m ²)	密度
30.0	0.48	$5.0 imes 10^4$	1.0×10^{-7}	0.14	1300

の低下量が小さいと考えられる.

5. 底泥の粗粒化特性及び巻き上げフラックス

波浪作用下の実験終了後,著しい含水比の低下が現れ たx=0.30m地点,岸側にあり含水比の低下が小さいx= 0.75m地点,およびFluid mud内を対象にして,底泥の粒 度変化に関する調査を行った.Case2における実験後の 底泥の粒度分析結果を図-10に示す.

著しく含水比が低下し,深い亀裂が形成されていたと 考えられるx = 0.3m地点では,最深部から2~10μmのシ ルト分粒子が10%程度流失していることが確認される一 方,Fluid mudの表層部では,2~10μmの成分が増加し ていることがわかる.また,含水比の低下が小さく有意 な亀裂が形成されていないと考えられるx = 0.75m地点で は,有意な粒度変化は現れていない.すなわち,底泥の 粗粒化には亀裂の形成が深く関係し,水みちとなる亀裂 を通して底泥内の深部から流失した細粒分はFluid mudの 表面に達し,最終的には波浪による巻き上げにより流失 すると考えられる.

また, Case2の実験終了後, 底泥の巻き上げフラック スを調査するために, 水中に浮遊する底泥粒子, Fluid mudおよび土槽の外に沈殿・堆積している底泥を回収し た.回収した底泥粒子の乾燥重量より, 初期の底泥条件 に対応する流失量を算定し,実験期間中における平均の 巻き上げフラックスを評価すると, 1.3×10⁻⁴kg/m²/sであ

ることがわかった.

三村ら(1989, 1990)は、底泥を第一底泥グループ (カオリン,現地泥)と第二底泥グループ(ベントナイト)に分類し、波による底面せん断応力と底泥の限界せん断応力に着目して、各グループの巻き上げフラックス を評価している。底泥のグループに関して、本研究で用 いる底泥は、港湾の浚渫粘土であり、第一底泥グループ に分類されると考えられる。また、Case2の波浪条件で は、外力として作用する底面せん断応力 τ_m は0.38N/m²で あり、三村ら(1990)の研究で評価されている第一グルー プ(現地泥)の巻き上げフラックスのうち、本研究の実 験条件に対応する値は、1.0×10⁴~8.0×10⁴kg/m²/s 程度 である。すなわち、本研究の実験における巻き上げフラ ックスは、既往の研究で報告されているものと、同程度 の量であることがわかる。

また、本研究で調査した巻き上げフラックスを用いる と、72時間後の実験終了時における底泥の侵食深さは、 0.063mと算定できる.実験終了時の底泥面は、初期底泥 面から0.07m程度低下した位置にあることが確認されて おり、底泥に深い亀裂が形成されるような外力が作用し ている条件下では、圧密による沈下量に比べて、巻き上 げによる侵食量が大きいことがわかる.

6. おわりに

海底面を強く撹乱する高波浪の発生が少ない閉鎖性水 域では、海底に堆積した底泥は、波や流れの作用、塩分 濃度・水温の変化、生物遺骸の沈殿など各種の複雑な環 境の影響の下で、圧密されて地盤が形成される.本研究 では、地盤の形成に対する影響因子のうち、波浪に着目 して、波浪作用下における底泥の圧密挙動を解明するこ とを目的として実験を行った.

実験では,特に,底泥の流動化や波動運動に伴って, 底泥内に形成される亀裂に着目した.

実験の結果, 亀裂の発達特性や底泥の圧密特性に対し て, 波浪の大きさだけでなく, 底泥層内に発生するすべ りが影響を与えることを明らかにした.また, 底泥内の 過剰間隙水圧挙動を調べるとともに, 数値解析による検 討を行い, 波浪の繰り返しせん断作用により亀裂先端部 の周辺で過剰間隙水圧が蓄積される過程と, 亀裂の排水 促進効果によって過剰間隙水圧が消散する過程が繰り返 される中で, 静水条件下の自重圧密以上に圧密が促進さ れることを明らかにした.

本実験では、底泥が堆積した後の時間経過が少ない状 態を想定し、初期含水比を一定にした条件で実験を行っ たが、実際の地盤の形成過程を考えた場合、自重圧密が 進行した後に、波浪が作用することがあると考えられる. 自重圧密が進行し、含水比が鉛直分布を持つ条件を含め て検討することが、今後の課題として重要であると考え られる.

参考文献

- 熊谷隆宏・土田 孝・大坪政美・渡部要一・五明美智男・塩 田耕司(2007):波浪作用下における底泥表層の圧密促進 メカニズム,地盤工学ジャーナル, Vol.2, No.3, pp.223-235.
- 熊谷隆宏(2009): VOF 弾塑性 FEM 連成モデルによる基礎 地盤および構造物の変形解析と破壊メカニズムに関する 考察,海岸工学論文集,第56巻,pp.871-875.
- 土田 孝・熊谷隆宏・池野勝哉・渡部要一・五明美智男 (2005):波浪作用下の底泥の挙動に関する解析手法につ いて,海岸工学論文集,第52巻, pp.451-455.
- 土田 孝・五明美智男(1999):波による水圧変動に対する底 泥層の安定について、海岸工学論文集,第46巻,pp.596-600.
- 鶴谷広一・村上和男・入江功・笹嶋 博・糸井正夫(1994): Fluid Mudを考慮した3次元シルテ-ション予測モデルについて、海岸工学論文集, Vol. 41, pp. 1011-1015.
- 三村信男・田口 智・加藤 始(1989):波よる底泥の巻き上 げ・沈降フラックス,海岸工学論文集,第36巻, pp.309-313.
- 三村信男・田口 智・加藤始(1990):底泥の波に対する応答 と巻き上げ・沈降フラックス,海岸工学論文集,第37巻, pp. 230-234.
- Odd, N. V. M. and Cooper, A. J. (1989): A Two-dimensional model of the movement of Fluid Mud in a high energy turbid estuary, J. of Coastal Res., Special Issue No.5, High Concentration Cohesive Sediment Transport, pp. 185-193.