洋上風力発電のための RC製二段円筒型浮体の動揺特性

MOTION CHARACTERISTICS OF CYLINDRICAL FLOATING BODY FOR OFFSHORE WIND POWER GENERATION

森屋陽一¹•安野浩一朗²•原基久³•福本幸成⁴•鈴木英之⁵•藤田圭吾⁶ Yoichi MORIYA, Koichirou ANNO, Motohisa HARA, Yukinari FUKUMOTO, Hideyuki SUZUKI and Keigo FUJITA

¹正会員 工博 五洋建設(株)技術研究所(〒329-2746 栃木県那須塩原市四区町1534-1)
²正会員 五洋建設(株)技術研究所(〒329-2746 栃木県那須塩原市四区町1534-1)
³正会員 工修 五洋建設(株)土木設計部(〒112-8576 東京都文京区後楽2-2-8)
⁴正会員 東京電力(株)技術開発研究所(〒230-8510 神奈川県横浜市鶴見区江ヶ崎町4-1)
⁵工博 東京大学大学院教授 工学系研究科 環境海洋工学専攻(〒113-8656 東京都文京区本郷7-3-1)
⁶東京大学大学院 工学系研究科 環境海洋工学専攻(〒113-8656 東京都文京区本郷7-3-1)

The coastal areas of Japan are estimated to have vast offshore wind energy potential. In order to use large quantities of offshore wind energy, it is necessary to develop a floating body for offshore wind power generation applicable to deep sea areas. Several researches have been made to meet the requirements. Therefore, we proposed a cylindrical floating body with two steps composed of concrete for offshore wind power generation, and we checked the applicability of it by wave tank experiments. In the experiments, however, wind forces were not taken into consideration.

In this study, wind tunnel with water tank tests were carried out and the response characteristic of the floating body was evaluated. Validity of the analysis system was verified. The optimum floating body size and the mooring facilities were determined by the analysis system.

Key Words : Floating body, wind power generation, wind tunnel with water tank

1. はじめに

環境への負荷が小さく,採算性の期待できるエネ ルギーとして風力発電が注目されており,我が国で も陸上における風力発電を中心に開発が進んでいる. しかしながら,2010年までに300万kWという目標導 入量を陸上風力のみによって達成させることは困難 であると指摘されており,洋上への展開が不可欠と なってくる.一方,我が国の海底地形は岸から離れ るに従って急速に水深が増すため,風況がよいある 程度岸から離れた海域では,欧州で実績の豊富な着 底式の洋上風力は不向きであり,浮体式洋上風力が 有利となってくる.

このような背景から,近年,浮体式洋上風力発電 に関する研究は盛んに行われている¹⁾.著者ら²⁾も, 材料費の安いコンクリートを用いたRC製円筒型浮体 を提案し,水理模型実験による浮体の動揺特性を評 価するとともに、動揺特性に対するグリーン関数法 を用いた動揺解析手法の適用性を示した.また、波 浪に対するHeave共振を回避するための手段として 上部細型の二段円筒型浮体を提案し、その優位性に ついて検討した.しかしながら、これまでの研究は 波浪のみを作用させた水理模型実験に基づいており、 実験において風力や潮流力は考慮されていない.浮 体式洋上風力発電の成立性を確認するためには、波 浪だけでなく風力や潮流力を考慮した上で議論する 必要がある.

そこで本研究では、潮流力を考慮した風水洞実験 を行ってRC製二段円筒型浮体式洋上風車の応答特性 を評価するとともに、波、風、潮流作用時の動揺解 析手法の妥当性の検証を行った.さらに、動揺解析 により二段円筒型浮体の最適な浮体寸法および係留 方法の検討を行った.

2. 動揺解析手法の概要

動揺解析は流体力のうち波強制力,付加質量,造 波減衰係数は線形ポテンシャル理論に基づくグリー ン関数法で算定した.風力,潮流力は速度の2乗に 比例する抗力として評価した.係留力はカテナリー 理論により算定した.

また、実機を想定して波や風の不規則性を考慮し た解析を行う場合には、不規則波としてブレッド シュナイダー・光易型スペクトルを用い、不規則風 としてダベンポートのスペクトルを用いた.

上記の力を考慮して,浮体の運動方程式を数値積 分することにより,動揺量や係留索張力を時系列的 に評価した.ここで,不規則波に対する解析を行う 場合の付加質量,造波減衰係数の算定は,有義波周 期に対して行った.

3. 風水洞実験

(1) 実験概要

実験は、水平回流式送風機とフラップ型造波機を 備えた(独)海上技術安全研究所の幅3m、風洞部長 さ15m、高さ2m、水槽部長さ17.6m、深さ1.5mの風水 洞を用いて、フルードの相似則に従い縮尺1/150で 実施した.図-1に示す二段円筒型の浮体模型を チェーンで4点係留し、図-2に示すように水槽内に 設置した.

浮体模型は森屋ら²⁰が波浪による動揺実験に基づ いて提案した諸元を参照して製作した.模型の諸元 を表-1に示す.定格出力風速作用時(以下,定格 時)及び強風により発電機を停止する時の風速作用 時(以下,カットアウト時)の風車は,想定される 水平荷重を模擬できる多孔円盤で模擬し,想定暴風 作用時(以下,暴風時)の模型はブレードが静止し た状態を模擬して製作した.既存の風車を参考に, タワーとナセルは5°傾けて取り付けたので,多孔 円盤およびブレード模型もタワーに対して5°傾い ている.実験結果の再現計算に用いた模型各部の受 風(受流)面積と抗力係数を表-2に示す.多孔円盤 の抗力係数は,シート・ネット・防音パネルの充実 率と抗力係数の関係³⁰を参考に決定した.

実験では、規則波、定常風、一様な潮流力を外力 として与えた.表-3に実験条件を示す.定格時条件 では、波高、風速、潮流条件を固定し周期のみを変 化させた、潮流力は現地で1.85m/sの潮流が作用し た場合に受ける潮流力およびドリフト量を実験室ス ケールに換算し、潮流力0.216Nで10.8cmのドリフト が生じるようにほぼ線形的な弾性特性を有するゴム ひもを浮体の潮流力作用中心位置に取り付けて再現 した.実験用の係留チェーンは実機用の水中単位長 さ質量0.3154t/mを実験室スケールに換算した値に ほぼ一致する水中単位長さ質量6.6g/mのアルミ製の ものを用い、水槽底面に設置した4kgの重りに固定 した. また,模型のナセル部に前後2ヶ所,タワー部に 10cm間隔で3ヶ所にLED(発光ダイオード)ランプを 取り付け,3台のビデオカメラにより撮影し,専用 ソフトで解析することにより動揺量を評価した.係 留索張力はチェーンに荷重計(SSK LT6)を設置し て計測した.

図-1 浮体模型写真

	想定実機	模型(1/150)		
浮体全高さ	80m	53.3cm		
浮体上部高さ	22.5m	15.0cm		
浮体下部高さ	57.5m	38.3cm		
浮体上部径	6.0m	4.0cm		
浮体下部径	12.5m	8.3cm		
タワー高さ	68.0m	45.4cm		
総質量	7286t	2159g		
喫水(f1-ン設置時)	75.3m	50.2cm		
重心(底面基準)	28.8m	19.2cm(定格時)		
		18.3cm(暴風時)		
メタセンタ高さ	0.75m	0.3cm(定格時)		
		1.6cm(暴風時)		

表-1 浮体諸元

表-2 実験模型の受風(流)面積および抗力係数(現地ス ケール)

a n	诸元	定格時 カットアウト時	暴風時
浮体の水面	受風面積(m ²)	28.50	28.50
上部	抗力係数	1.20	1.20
タワー部	受風面積(m ²)	155.68	238.68
	抗力係数	0.60	0.60
ブレード	受風面積(m²)	1567	144
(水平方向)	抗力係数	1.32	1.20
ブレード	受風面積(m ²)	270	25
(鉛直方向)	抗力係数	1.32	1.20
浮体の水面	受流面積(m²)	780.61	780.61
下部	抗力係数	0.50	0.50

表-3 実験条件(現地スケール)

	波高	周期	風速	潮流
定格時	3.0m	7.3s ~	14.0m/s	1.85m/s
		36.7s ,		
		1.47s刻み		
カットアウト	6.0m	7.3s ,	24.5m/s	1.85m/s
時		12.2s		
暴風時	12.0m	7.3s ,	49.0m/s ,	1.85m/s
		12.2s	73.5m/s	

(2) 自由振動実験

係留状態での浮体の自由振動特性を把握するため に、自由振動実験を行った.図-3に自由振動実験結 果の一例として、定格時模型のPitchの時系列を示 す.また、計測された動揺量から評価した浮体の固 有周期を表-4に示す.

動揺量を計測するために浮体模型に設置している LEDランプのケーブルは、浮体動揺への影響を避け るために、テンションがかからないように設置して いるものの、ケーブルの自重の影響を全て取り除く ことはできない、そこで、定格時の模型については、 LEDランプを取り外し、浮体にマーカーを付け、ビ デオカメラで撮影することにより、LEDランプの ケーブルの影響も把握した、LEDランプのケーブル の影響により、やや固有周期が長くなる傾向がある が、一番影響を受けているPitchでも7%程度の違い しかなく、LEDランプのケーブルの影響は大きくは ないといえる.

図-3 自由振動実験の時系列の例(定格時模型)

表-4 浮体の固有周期(現地スケール)

	Surge	Heave	Pitch
定格時浮体	130.2s	33.8s	44.8s
定格時浮体	138.9s	34.2s	48.3s
(LEDケ-ブルなし)			
暴風時浮体	133.4s	33.9s	33.7s

(3) 外力特性

図-4に目標波高2cmとした場合の計測周期ごとの 計測波高を示す.波高については、周期2.5s以上の ケースで目標値との誤差が大きい結果となった.そ こで,水槽岸側からの反射波の影響を含め、水槽内 の波浪場の特性を把握するために、波浪場の入・反 射波分離を行った.図-5に入・反射波分離⁴⁾結果の 反射率を示す.

周期2.5s付近以上のケースで反射率が大きくなる 傾向を示すが,反射率は0.4程度以下である.反射 面が模型設置位置から1波長以上離れていることか ら,周期2.5s以上の計測波高の目標値とのズレの原 因は,反射波によるものではなく,造波機の特性に よるものと考えられる.本実験においては,入・反 射分離結果における入射波高を用いて整理すること とする.なお,周期については,目標値とほぼ一致 する結果が得られている.

(4) 長周期変動成分

図-6は外力が波のみの場合,風のみの場合,風と 波の場合の定格時のPitchの周波数スペクトルであ る.風が作用するとPitchに長周期成分が現れる. 風水洞内では定常風を起こしているため,風作用時 の長周期動揺の原因は検討しておく必要がある.こ こでは,この長周期成分が発生する原因について考 察を試みる.

この長周期成分の原因としては、①装置の特性な

どによる定常風の変動,②カルマン渦列の発生によ る受風部の動揺,③実験開始時の外力立上げに伴う 固有周期の動揺の増幅などが考えられる.

表-5は、スペクトル解析による長周期側のピーク に対応する周期、カルマン渦列による受風部の動揺 周期、浮体のPitchの固有周期を風速別に比較した ものである。カルマン渦列の発生による受風部の動 揺周期の算定にあたっては、ストロハル数を0.2と して、風車部、タワー部、浮体水上部それぞれにつ いて動揺周期を算定し、それらの最小値と最大値を 示した。

図-6 Pitchの周波数スペクトル(定格時)

	風速	実験ピーク	カルマン渦による	Pitch 固	
		周期	動摇周期	有周期	
定格時	14.0m/s	52.3s	2.2~16.2s	44.8s	
暴風時	49.0m/s	39.3s	0.2~4.7s	33.7s	

表-5 要因別の動揺周期

定格時および暴風時いずれの風速においても、ス ペクトル解析による長周期側のピークに対応する周 期、カルマン渦列の発生による受風部の動揺周期、 浮体のPitchの固有周期は、いずれも対応していな い.したがって、Pitchの長周期動揺は実験時の定 常風の変動が原因である可能性が高い.

上記の検討を踏まえて、外力条件が波のみの場合 と風のみの場合のPitchの周波数スペクトルより定 常風の変動の影響と考えられる動揺の長周期成分の 敷居周期を設定し、それ以上の長周期成分はカット してデータ処理を行うこととした.ただし、実験の 周期が24s以上のデータについては、入射波による 動揺周期と動揺の長周期成分の周期が近く、その分 離が難しいため、長周期成分はカットしていない.

(5) 応答特性

図-7に波,風,潮流作用下の定格時の動揺の応答 特性について実験結果と解析結果を示す.Surge, Heave, Pitchともに実験結果と解析結果は良好な対応を示している.ただし,Heaveの共振周期付近に おける解析結果は非常に大きな値を示し,実験結果 と対応しない.また,実験結果の波周期24秒以上 (図-7中において破線で結んだ領域)で値がばらつく が,これは前述した長周期変動を除去していないた めである.

ここで、解析における粘性減衰の影響について検

討した.図-7(b)に示すようにHeaveの共振周期である35s付近の応答は、粘性減衰を考慮することで実験結果の再現性が向上する.しかしながら、共振周期付近以外の周期のHeaveおよびSurgeとPitchについては、粘性減衰を考慮しても解析結果にはほとんど影響しないため、本検討では安全側の検討結果を与えると考え、粘性減衰は考慮しないものとした.

次に,発電中に動揺の加速度が大きくなるとナセ ル部の発電機械系に障害が起きる可能性があるため, カットアウト時についてはナセル水平加速度の応答 について実験結果と解析結果を比較した.図-8に波, 風,潮流作用下のカットアウト時のナセル水平加速 度の応答を示す.ナセル水平加速度の応答は,解析 結果の方が実験結果よりもやや大きいものの,解析 結果は実験結果をほぼ再現できていることがわかる.

次いで、暴風時の条件において、浮体の水平ドリ フト量と係留索張力の実験結果と解析結果を比較し た. 図-9に風速に対する波、潮流作用下の暴風時の 浮体の水平方向のドリフト量を比較した結果を示す. ここで、ドリフト量は風上方向(図-2の右方向)を 正と定義している.風作用下の水平方向のドリフト 量は、実験結果と解析結果で大きく異なり、解析結 果は実験結果の6~8割程度の値となっている.風な しのケースでは実験結果と解析結果はよい対応を示 しており、風を作用させた場合のドリフト量に相違 が生じる原因としては、暴風時の浮体水面上部、タ ワー部、ブレードの抗力係数の設定にあると考えら れる.しかしながら,これらの部位に対する抗力係 数は表-2に示した標準的な値を用いており、本検討 に用いた模型各部の抗力係数の値については、今後 の課題であると考えている.

図-10に風速に対する波,潮流作用下の暴風時の 沖側の係留索張力を示す.係留索張力に関しても, 風作用下の場合における実験結果と解析結果は異な る.この原因も水平方向のドリフト量と同様に,解 析における抗力係数の値に問題があると考えられる. なお,鉛直方向の沈み込みは実験結果でも解析結果 でもほとんど生じなかった.

以上より、動揺解析手法は抗力係数(回転時のブレードにおいてはスラスト係数)を適切に設定する ことにより、最適な浮体寸法や係留条件の決定のために、2段円筒浮体の動揺特性をほぼ十分な精度で 再現できると考えられる.

4. 最適浮体寸法および係留条件

(1) 検討条件

表-6に検討に用いた外力条件を示す.外力条件は 関東地方の20km程度沖合の太平洋上の地点を想定し て設定した.なお,表-6中の平均風速は水面からの 高さ10mの位置における平均風速を示している.表-7に制約条件を示す.制約条件は定格出力2.4MW級の 風車を想定して設定した.制約条件として,定格時 は平均傾斜角を10°としている.これは,傾斜角が ない場合に比べて,発電効率が10%程度低下⁵⁾する 条件となっている.

表-6 外力条件

	有義波高	周期	平均風速	潮流
定格時	3.9m	7.4s	12.5m/s	1.85m/s
カットアウト時	7.1m	9.8s	25.0m/s	1.85m/s
暴風時	12.0m	13.4s	50.0m/s	1.85m/s

表 -7 制約条件				
定格時	平均傾斜角10度以下			
カットアウト時	ナセルの加速度最大値0.2g以下			
	(g:重力加速度)			
暴風時	ブレードが没水しない(ナセルの鉛直下向			
	き変位の最大値24m以下)			
係留索張力	チェーンの破断強度の1/3以下			

表-8 ブレードのスラスト係数

	定格時	カットアウト時	暴風時
スラスト係数	0.458	0.057	1.3

表-8に最適な浮体寸法および係留条件の検討に用 いたブレードのスラスト係数を示す.ナセルやタ ワー等の抗力係数は表-2と同様の値を用いた.この 条件に対して,動揺解析により最適な浮体寸法の決 定および最適な係留条件の設定を行った.

なお,実際には定格時やカットアウト時の検討を 行う場合には,風車が回転することによる力が浮体 に作用するが,本検討においてはこの力は考慮して いない.

(2) 浮体寸法および係留条件の検討

最適な浮体寸法の決定のために、水面周りの風荷 重によるモーメントおよび潮流力によるモーメント に対する浮体の復元モーメントの釣り合いから、浮 体の傾斜角が10°以下になるように、浮体全高、上 部浮体高、下部浮体円筒径、バラスト高を決定した. また、コストを抑えることを考慮し、条件を満たす 浮体寸法のうち、浮体質量が最も軽くなる浮体寸法 を最適案とした.

最適なチェーンによるカテナリー係留において決 定すべき事項は、①チェーンの浮体側取付位置、② チェーン長、③チェーン規格(海水中単位長さ質 量),④シンカー設置位置、⑤チェーン本数の5つ である.浮体の動揺の観点からポンツーン等に対す

図-11 最適な浮体寸法および係留条件

るチェーン係留の最適条件を設定する方法として, 上田・白石⁶⁰の提案した方法がある.ここでは上田・ 白石の方法を参考にして,森屋ら²⁰と同様に動揺解 析により制約条件を満たす範囲で,コストの観点か ら係留索がもっとも短くなる条件を最適な係留条件 として設定した.最終的に決定した最適な浮体寸法 および係留条件を図-11に示す.

(3) 実機の動揺特性

最適条件における動揺解析結果の時系列図の例 (4000s~5000s)を図-12に示す.

定格時の浮体の平均傾斜角は7.4°(後傾)(<10°),カットアウト時のナセルの加速度振幅の最大値は0.17g(<0.2g,g:重力加速度(9.8m/s)), 暴風時のナセルの最大鉛直変位は11.4m(<24.0m), 係留索張力の最大値は2913kN(<破断強度(9300kN) の1/3)であり,()内に記述した制約条件を全て 満たしていることがわかる.ここで,平均値や最大 値の算出は8000秒の解析のうち,立ち上がり時間の 1000秒を除いた7000秒間のデータを用いて行った.

5. まとめ

潮流力を考慮した風水洞実験により,RC製二段円 筒型浮体式洋上風車の応答特性を評価するとともに, 波,風,潮流作用時の動揺解析手法の妥当性の検証 を行った.さらに,動揺解析により二段円筒型浮体 の最適な浮体寸法および係留方法を決定した.

今後は,風車の機械系の制約条件などの検討を行 うとともに,詳細な構造,施工性,コストなどにつ いても検討を実施していく予定である.

謝辞:実験に関して(独)海上技術安全研究所の矢 後清和氏には有益なご指導を頂きました.ここに記 して謝意を表します.

参考文献

- 1) 例えば, 矢後清和・大川豊・日根野元裕・高野宰・砂 原俊之:浮体式風力発電用基盤浮体に関する模型実験, 海洋開発論文集, 第22巻, pp863-868, 2006.
- 2)森屋陽一・土屋京助・原基久・福本幸成・鈴木英之: 洋上風力発電のためのRC製スパー型浮体に関する研究, 日本沿岸域学会検討研究会,講演概要集, No.19, pp212-215, 2006.
- 3) 風荷重に対する足場の安全技術指針<SI 単位対応版>, 社団法人 仮設工業会, pp. 25-30, 2004.
- 合田良美・鈴木康正・岸良安治・菊池治:不規則波実験による入・反射波の分離推定法,港湾技研資料, No. 248, 1976.
- 5) 大川豊, 矢後清和, 佐藤千昭, 鈴木英之, 関田欣治, 日根 野元裕: 浮体式浮力発電により代替エネルギー創出システ ムの検討, 第25回風力エネルギー利用シンポジウム, 日本 風力エネルギー協会, pp.165-168, 2003.
- 6) 上田茂・白石悟:カテナリー理論による最適係留鎖の 選定法および計算図表,港湾技研資料, No. 379, 1981.