円形定着板を用いた機械式定着工法の開発 - 外周部柱梁接合部実験 -

服部 覚志* 竹内 博幸**

要旨

本開発では、鉄筋コンクリートや鉄骨鉄筋コンクリート構造物の配筋作業の省力化を目的として、 柱梁接合部における主筋端部などの定着工法として、鉄筋の形状に左右されない形式の機械式定着工 法の開発を行っている。開発対象は、鉄筋の端部にネジを摩擦圧接し、そのネジに円形の定着板を取 り付ける工法である。

本報では、上記機械式定着工法に関して、外周部柱梁接合部を模擬した部分架構構造実験の結果に ついて報告する。実験は、コンクリート強度、定着長、定着工法、破壊形式を実験因子とした試験体 を7体製作し、正負交番の繰り返し加力とした。その結果、円形定着板を用いた梁曲げ降伏先行型の 試験体においては、急激な耐力低下を伴う脆性的な破壊はなく、最大耐力も計算値を上回った。また、 梁主筋の柱梁接合部内における定着長を2/3D(D:柱せい)とした場合の結果は、定着長を3/4Dと した場合と比較して、ほぼ同等の性能を有することが確認された。

なお、本実験は4社共同研究会「機械式定着工法の開発」ワーキンググループにおいて、当社が 実施を担当した実験である。

1.はじめに

鉄筋コンクリート造建物の外周部柱梁接合部(以下、 ト形接合部)への梁主筋の定着は、90度折り曲げ定着が 主に採用されており、また、上端筋と下端筋を端部で リ字型に繋いだ状態としたU字定着もある。これらの 定着方法は、鉄筋を折り曲げるのみのため非常に簡便な 定着方法である。しかしながら、一般に接合部内の配筋 は複雑であり、太径鉄筋を用いた場合や配筋量が多い 時には、納まらない事例が生じる。

このような問題を解決することを目的として、近年、 主筋端部に定着金物を取り付ける機械式定着工法に関す る研究開発が行われ、実用化されている。現在、建築 工事において主に採用されている機械式定着工法は、 ネジ節鉄筋に、定着具として方端が鍔形状のナットを 取り付ける工法がある。上記工法では、使用出来る鉄筋

の形状が限定されていることや定着具 を固定するためにグラウトを注入する ことが必要で手間がかかるといった 問題がある。

本研究では、広く流通している竹節 形状の鉄筋にも適用できる機械式定着 工法として、定着する主筋端部にネジ を摩擦圧接し、中央部にネジを切った 円形定着板を手締めにて締め込む工法 を対象として、開発を行った。

本報では、この機械式定着工法を 梁主筋に用いたト形接合部の、靭性能 やせん断耐力の検証を行うことを目的 として行った、約 1/2 縮小モデルの 構造実験について報告する。 2.実験概要

2.1 試験体

試験体一覧を表 - 1 に、試験体形状を図 - 1 に示す。 試験体は、RC 造における外周部の柱梁接合部を模擬した 形状で、7体製作した。断面形状はすべて同一で梁: B×D=350×450、柱:B×D=400×400とした。実験 因子は、コンクリート強度・定着方法・梁主筋の定着長・ 破壊形式とした。0-1~0-5を梁主筋降伏先行型シリーズ、 0-6、7を接合部せん断破壊型シリーズとし、それぞれの 基準試験体は 0-1、0-6 である。基準試験体である 0-1、 0-6 は、目標コンクリート強度 42N/mm²、定着長 267mm (2/3D:D は柱せい)である。梁主筋降伏先行型シリー ズでは、目標コンクリート強度を60(0-2)及び21N/mm² (0-3)と変化させ、0-4 では定着長を300mm(3/4D) 0-5 は U 字定着とした。ここで定着長は、機械式定着の

表 - 1 試験体一覧

	梁主筋		目標コン							
	鋼種	本数・径	クリート 強度 (N/mm ²)	定着長 (mm)	破壊形式	せん断 余裕度	実験因子			
0-1	SD390		42	267-10 6d	梁曲げ	1.52	基準試験体			
0-2	SD490		60	_2/2•D		1.55	Fc大			
0-3	SD345	3-D25	21	=2/3*0		1.06	Fc小			
0-4	00202		42	300(3/4·D)	呼び元1」	1.71	定着長大			
0-5	30390			267(2/3·D)		1.52	U字定着			
0-6	SD685	4 D25	42	267(2/2.0)	接合部	0.62	基準試験体			
0-7	30000	4-020	60	201 (2/3 0)	せん断破壊	0.80	Fc大			
+ 6. 断全公府建築学会略算式による梁主筋降伏耐力計算値 ¹⁾										

靭性保証型指針式による接合部せん断耐力計算値²⁾

《共通》柱主筋:12-D22(SD490)、柱せん断補強筋:2-D100 100(SD785)、 梁せん断補強筋:2-D100 60(SD785)、側面かぶり厚さ:75mm(3db)、接合

**技術研究所 *東京支社 建築支店

図 - 1 試験体形状

場合、梁危険断面から定着板内側までの距離、U 字定着の場合、接合部内定着部の水平投影長さとする。

また、接合部せん断破壊型シリーズにおいては、0-7 の目標コンクリート強度を 60N/mm²とした。

2.2 使用材料

試験体に使用したコンクリートの試験結果と鉄筋の 試験結果を表 - 2、3に示す。また、図 - 2に梁主筋に 使用した鉄筋の応力 ひずみ曲線を示す。

コンクリートの圧縮試験結果は、想定したコンクリー ト強度にほぼ近い値となった。梁主筋に使用した D25 の 鉄筋の応力 ひずみ関係は、すべての鋼種において降伏 だなが明確に確認された。

2.3 実験方法

加力装置を図 - 3に示す。

加力は、反力フレームの試験体上部より試験体柱に 一定軸力(使用コンクリート強度の 1/10)を加力した 状態で梁端部へ上下方向に正負交番の繰り返し荷重を 与えた。加力方向は、梁を引き上げる方向を正加力、 梁を押し下げる方向を負加力とした。加力の制御は、 梁反曲点位置(加力位置)にて変位制御で行い、層間 変形角(R)1/400rad、1/200rad を各1回、1/100rad、 1/67rad、1/50rad を各3回、1/33rad、1/25rad を各1回 繰り返した後、正側に1/20rad までとした。

層間変形角の測定は、上下の柱反曲点位置にあらかじ め打ち込んだボルトに計測フレーム(上側をピン支持、 下側をローラー支持)を取り付け、同様に梁反曲点位置 に打ち込んだボルトの計測フレームからの鉛直方向の

表-2 コンクリート試験結果

	目標強度	最大強度	弾性係数	割裂強度		
	(N/mm ²)	(N/mm ²)	(kN/mm ²)	(N/mm ²)		
0-1	42	44.1	32.5	2.99		
0-2	60	60.9	38.2	3.54		
0-3	21	24.3	26.7	1.98		
0-4	42	44.1	32.5	2.99		
0-5	42	44.1	32.5	2.99		
0-6	42	44.4	33.3	3.29		
0-7	60	62.1	38.3	3.51		

図 - 3 加力装置

変位を計測し、その値を、柱芯から梁加力点までの距離 で除すことにより行った。

3.実験結果と考察

3 . 1 結果概要

最大耐力の一覧を表 - 4 に、0-1、4、5、6 のひび割れ

状況を図 - 4 に示す。初期のひび割れ状況は、すべての 試験体においてほぼ同様であった。R=1/400 までに梁の 曲げひび割れが先行し、その後せん断ひび割れが 0-2、 0-4 を除いて R=1/200 までに発生した。梁曲げ降伏先行 型試験体では、R=1/100 までに梁主筋が降伏し、U 字 定着である 0-5 を除き、0-1、0-2 では R=1/33、0-3 で

		定着長	梁主筋 鋼種	実験結果		梁端荷重計算值						
	В	(主筋径比)		梁部材 降伏	最大荷重	梁曲げ耐力		接合部 せん断耐力		側面剥離 破壊耐力		破壊 形式
	(N/mm ⁻)	(mm)		降(kN)	実(kN)	計1(kN)	実/計1	計2(kN)	実/計2	計3(kN)	実/計3	
0-1	44.1		SD390	202	218	188	1.16	259	0.84	258	0.85	ΒJ
0-2	60.9	267(10.6d _b)	SD490	238	256	247	1.03	325	0.79	284	0.90	ΒJ
0-3	24.3		SD345	160	170	159	1.06	171	0.99	205	0.83	ΒJ
0-4	44.1	300(12d _b)	^{b)} SD390	201	229	188	1.22	292	0.78	258	0.89	ΒJ
0-5	44.1	$267(10.6d_{b})$		194	202	188	1.08	259	0.78	-	-	J
0-6	44.4	267(10.6d _b) S	SDESE	-	307	406	0.76	260	1.18	345	0.89	J
0-7	62.1		30000	-	363	406	0.89	329	1.10	381	0.95	J

表 - 4 最大耐力一覧

降:荷重変形曲線より算出した梁部材降伏耐力時層せん断力実験値

実:最大層せん断力実験値

計1:建築学会略算式による梁曲げ耐力を層せん断力に換算1)

計2: 靭性保証型耐力式による接合部せん断耐力を梁端荷重に換算2)

計3:側面剥離破壊強度式による梁主筋の定着耐力を梁端荷重に換算3)

B:梁主筋降伏、J:接合部破壊

図 - 4 ひび割れ状況

はR=1/67、0-4ではR=1/25の最大荷重後に、せん断 ひび割れが進展すると共に緩やかに耐力低下した。接合 部せん断破壊型試験体では、R=1/50の負加力時に、せん 断ひび割れが急激に進展し、耐力低下した。その後、 耐力は徐々に低下した。0-5 では、梁主筋が降伏したも のの、接合部せん断ひび割れが、梁の取り付いた側の 柱支点方向に進展し、梁がもぎ取られるような破壊形状 であった。

最大耐力については、梁曲げ降伏先行型試験体では 建築学会の略算式による梁曲げ耐力計算値と、接合部 せん断破壊型試験体では、靭性保証型耐力式による接合 部せん断耐力計算値のそれぞれ 1.03~1.22 倍となり、 計算値と良く一致した。

3.2 荷重変形関係

層せん断力 - 層間変形角(Qc -R)関係を図 - 5に示す。図中には、 接合部にせん断ひび割れ発生、 梁主筋降伏、最大耐力の点をそれ ぞれ示している。

梁曲げ降伏先行型の試験体 (0-1~0-5)においては、梁曲げ 耐力計算値を最大耐力が上回り、U 字定着とした 0-5 以外の試験体の 最大耐力は、R=1/33~1/25 で確認 され、その後の耐力低下も小さい。 また、接合部のせん断破壊型を指 向した試験体(0-6,0-7)では、靭 性保証型指針式によるせん断 力計算値を上回り、最大耐力に達 している。最大耐力後は、梁曲げ 降伏先行型の試験体と比較して耐 力の低下が大きい。

コンクリート強度を変化させた 0-1~0-3を比較すると、最大耐力 以後、0-3は繰り返しによる耐力低 下が他よりも大きい。これは、 コンクリート強度が低く、曲げ 耐力時の接合部せん断余裕度が 1.03と、せん断耐力と曲げ耐力が 近いためであると考えられる。

定着長を変化させた 0-1 と 0-4 では、0-4の最大耐力が若干大きい が、R=1/20 での層せん断力は ほ とんど変わらない値を示している。 3.3 接合部せん断変形

試験体 0-1、4、5、6の接合部せん断応力度 - 接合部せん断変形角 (p-)関係を図 - 7に示す。 図中、接合部せん断強度(pu) は、靭性保証型指針式の有効断面 積を用い、機械式定着工法の場合 は、定着長を有効せいとして算出 した。接合部せん断変形角の計測 は、接合部4隅(250角)にあらか じめ打ち込んだボルトの対角の長 さ変化を計測することにより行った。

U 字型定着である 0-5 を除いた試験体では、最大耐力 の次のサイクルより が急激に大きくなった。

定着長を変化させた 0-1 と 0-4 では、繰り返しによる せん断変形角は 0-1 が若干大きく、最終時の変形角も 大きな値を示している。これは、0-1 では定着長が短い ため有効断面積が小さく、せん断応力度が 0-4 と比較し てせん断応力度が大きくなっているためであると考えら れる。

U字定着の 0-5 は、比較的せん断変形は小さい。最大 耐力後の耐力低下が著しく、入力せん断力が小さいこと もあるが、他の試験体と異なる破壊であると考えられる。

0-6 では、接合部せん断応力 が接合部せん断強度(pu)を 大きく上回り、その後、繰り 返しによりせん断変形角がしだ いに大きくなっており、接合部 がせん断破壊したと考えられる。

他の試験体については、梁 曲げ降伏先行を指向した 0-2、 0-3は、0-1に、接合部せん断破 壊を指向した 0-7 は、0-6 に類 似していた。

3.4 梁主筋のひずみ分布と 平均付着応力度

0-1、0-4、0-5、0-7の梁主筋 のひずみ分布を図 - 7 に、各試 験体の梁下端主筋の引張応力 -平均付着応力度(Ft - a)関係 の正加力時の包絡線を図 - 8 に 示す。図-7(ひずみ分布)で は、0-1 において、隅角筋の正 加力時(下端筋主筋)及び負加 力時(上端主筋)と中間筋の正 加力時を示し、0-4、0-5、0-7 は、隅角筋の正加力時を示す。Ft-曲線では、0-6、0-7 において、R=1/50

から主筋へ入力される引張応力が小さ くなると共に付着応力も小さくなった ため R=1/50 までの表記とした。なお、 平均付着応力度は、梁危険断面の主筋 の 応力度から定着板近傍の主筋応力 度を差し引いた値を、主筋表面積(周 長×計測区間長さ)で除した値とした。 ここで、主筋応力度は、鉄筋の引張試 験から求めた弾性係数より算出し、降 伏の判定は、引張試験より算出した降 伏ひずみ度により行った。

а

ひずみ分布においては、加力方向の 違い、及び梁主筋位置の違いによる 差異は確認されなかった。0-1、0-4 は、 ほぼ同等の性状を示した。接合部せん 断破壊型を指向した、0-7 では、 梁主筋の降伏は確認されなかったが、 梁危険断面位置の主筋においては、 降伏ひずみ度に近いひずみ度となった。

Ft - a 関係において、梁曲げ降伏 先行型を指向した 0-1~0-4 は、 梁主筋降伏まで顕著な付着応力の低下 は見られなかった。また、正加力と 負加力、および、隅角筋と中間筋の 差異もほとんどなく、定着板近傍での 降伏も確認されなかった。

0-6、0-7 においても最大耐力 (R=1/67)以後、R=1/50までは付着応力

図 - 7 梁主筋ひずみ分布

定着耐力を保持していたと考えられる。

4. 定着板の分担率

各試験体の梁主筋下端筋の定着板の分担率と層間変形 角の関係の包絡線を図 - 9に示す。定着板の分担率は、 定着板近傍の主筋応力を危険断面の主筋応力で除して 算出した。

U 字定着である 0-5 を除いたすべての試験体において ほぼ同様の曲線となった。層間変形角の増加と共に定着 板の分担率も増加しており、層間変形角 R=1/100 では、 定着板が約5~7割の主筋応力を負担し、最終時には 8割以上を負担している。一方、0-5 では、比較的早い 段階で折り曲げ定着部の負担率が大きくなる結果となり、 層間変形角 R=1/200 付近で折り曲げ定着部がすべての 主筋応力を負担する結果となっている。

5.まとめ

梁の主筋に機械式定着を用いた外周部柱梁接合部の 構造実験を行い、その破壊形状を確認した。 以下に、本実験で得られた知見を示す。

- (1) 梁主筋端部を機械式定着工法とした試験体は、計算 による想定破壊形状と良く一致した。
- (2) 梁曲げ降伏先行型の試験体の最大耐力の実験値と 建築学会の略算式による計算値の比は、1.03~1.22 で あり良く対応した。
- (3) せん断破壊型の試験体の最大耐力は、靭性保証型 設計指針の接合部せん断耐力の計算値を1割以上 上回った。
- (4) 梁主筋に U 字定着を用いた試験体は、建築学会の 梁曲げ耐力を上回ったものの脆性的な破壊をした。
- (5) 機械式定着工法を用いた試験体においては、定着 耐力の低下による破壊は確認されなかった。

本実験は、五洋建設㈱、㈱奥村組、合同製鐵㈱、

鉄建建設㈱で組織する、4社共同研究会「機械式定着工 法の開発」ワーキンググループにより行ったものである。

謝 辞

本実験を行うにあたり、御指導を頂いた東京理科大学、 松崎教授に深く感謝の意を表します。

参考文献

日本建築学会:鉄筋コンクリートの構造計算規準・ 同解説、p145、1999

- 日本建築学会:鉄筋コンクリート構造物の靭性保証 型設計指針(案)・同解説、p125、1997
- 2)村上雅英他:引き抜き試験による梁主筋の機械式定 着耐力の評価、コンクリート工学論文集、第8巻第 2号、1997