消波ブロックで被覆された岩着式ケーソンに作用する ブロック荷重について

水 流 正 人*・佐 貫 宏**・関 本 恒 浩*** 泉 雄 士****・平 岡 順 次*****・松 蔭 茂 男******

1. はじめに

消波ブロックで被覆された直立壁には,波の直接作用 による波力とブロックの寄り掛かりによる荷重(ブロッ ク荷重)が働く.このうち,波力に関しては,消波ブロッ クによる低減率λを考慮した合田式によって算定され るのが一般的となっている.

一方、ブロック荷重に関しては、廣本ら(1983)、島田 (1984)、田中ら(1985)、高橋ら(1989)などの研究が行 われているが、現在のところ確立された算定方法はない. 高橋ら(1989)によると、ブロック荷重は図-1に示すよ うに作用する波力によって、I:静水時ブロック荷重が 透過波力より大きい領域、III:ブロック荷重が無視でき る領域、II:両者の中間でブロック荷重が多少影響する 領域の3領域に分類され、波力が小さい場合や水深がか なり大きい場合以外はほとんど無視できるとしている. これより、現行の設計においてはブロック荷重が考慮さ れない場合が多い.

しかしながら、上述の研究はいずれも基礎マウンド上 のケーソンを対象としており、コンクリートで岩盤と一 体化した岩着式ケーソンの場合、ケーソンの変位があま り期待できないため、図-1中の領域IIIに該当するよう な大きな波力が作用する場合でもブロック荷重が無視で きなくなる可能性が高い.

そこで本研究では、岩着式ケーソンおよび基礎マウン ド上のケーソンを想定した水理模型実験を同一の条件で 行い,両者の実験結果を比較することにより,岩着式ケー ソンに作用するブロック荷重特性について考察を行っ た.

2. 水理模型実験

2.1 実験断面およびブロック荷重の測定方法

実験には、長さ50m,幅60cm,高さ1.2mの二次元

*	正会員		五洋建設(株)土木本部土木設計部
**	正会員	修(工)	五洋建設(株)技術研究所
***	正会員	博(工)	五洋建設(株)技術研究所
****	正会員	工修	五洋建設(株)中国支店土木部設計課
****	正会員		中国電力(株)土木部
*****	正会員		中国電力(株)島根立地調査事務所立地部

図-1 透過波力と水平合力の関係の模式図

造波水路を用いた.水路の沖側端部にはピストン型造波 装置が設置されている.また,水路内には 1/30 勾配斜面 が設置され,岸側は一様水深床と接続している.1/30 勾 配斜面端に縮尺 1/60 の実験模型を設置した.

図-2に実験模型の断面図を示す.模型はパラペット 後退型の堤体を想定し,前面を消波ブロック(80t型テト ラポッド)で被覆した.また,海底面,下部工およびケー ソンをそれぞれボルト・ナットで固定し,岩着式ケーソ ンを模擬した.基礎マウンド上を対象としたケースでは, ブロック荷重の受圧面積が変わらないように,点線(図-2)で示した形状に基礎マウンドを作成し,その上に天端 高が同じケーソンを設置した.

次に,波圧およびブロック荷重の測定の概要を図-3 に示す.ケーソンの前面壁にみたてた実験対象壁と左右

の固定壁で構成される堤体模型をアクリル板で作成し, 実験対象壁の前背面に波圧計を取り付けた.なお,実験 対象壁は左右の固定壁に上下2台づつ取り付けたロード セルによって支持されている.岩着式ケーソンを模擬す る場合は,固定壁を模型床に固定された下部工にネジ止 めした.また,マウンド上のケーソンを模擬する場合は, マウンド上に堤体を設置し,ケーソン内部に鉛を置いて 堤体の安定を図った.この実験装置によって,ロードセ ルには消波ブロックの透過波力とブロック荷重の合力 が,波圧計には透過波力のみが作用し,それぞれの差を とることによってブロック荷重が間接的に求められる.

2.2 実験ケースと実験方法

表一1に実験ケースの一覧表を示す.実験ケースは、岩 着式ケーソンとマウンド上ケーソンを想定したケースの 2つに大別される.実験波は,Bretschneider-光易型の沖 波スペクトルを用いた不規則波で換算沖波波高 9.5(m), 沖波周期13(s)の1種類である。また、岩着式 のケースについては,H.W.L.とL.W.L.を想定した水深 2種類(h=15.5m, 15.0m)に対して実験を実施し、比 較のため H.W.L.の条件に対してのみマウンド上のケー ソンを対象とした実験を行った。また、消波ブロックの 積み方によるデータのバラツキを考慮するため、消波ブ ロックの積み直しを岩着式のケースでは6回(3回×水 深2種類),マウンド上のケースでは3回行い,1回の積 み直し毎に約250波の波を3回続けて(通算750波)作用 させた。1シリーズの実験において測定したブロック荷 重は、①消波ブロック積載後、②注水後、③波作用時、 ④波作用後の4種類である.

なお,データのサンプリング周波数は,衝撃波力の発 生を見逃さない条件に着目して,1000 (Hz)と200 (Hz) について予備実験を行い,その結果から200 (Hz)を採 用した.

ケース	ケーソン 設置方法	潮位	ブロックの 積み直し	作用波数 (通算)
G-H-1			1回目	750 波
G-H-2		H.W.L	2回目	750 波
G-H-3	山寨中		3回目	250 波
G-L-1	石有八		1回目	750 波
G-L-2		L.W.L	2回目	750 波
G-L-3			3回目	250 波
M-H-1			1回目	750 波
M-H-2	マウンド	H.W.L	2回目	750 波
M-H-3			3回目	750 波

表一1 実験ケース一覧表

3. 実験結果

3.1 静水時のブロック荷重

静水時のブロック荷重 *F*_{BS} は、粒子の粗い土質材料による土圧とみなした場合、次式で表される。

$$F_{BS} = K_{S} \left\{ \frac{1}{2} \gamma (1-\varepsilon) (h+h_{c}) - \frac{1}{2} w_{0} (1-\varepsilon) h^{2} \right\}$$
.....(1)

ここに、 K_s :土圧係数に相当する係数, γ :ブロックの単 位体積重量, ϵ :ブロックの空隙率,h:ケーソン底面の 水深(m), h_c :ケーソン天端高(m), w_0 :水の単位体積重 量である.

消波ブロックを積載して注水した直後は、岩着式ケー ソンの場合 $K_s=0.32\sim0.84$,基礎マウンド上ケーソンの 場合 $K_s=0.47\sim0.64$ であり、岩着式ケーソンの方がや やばらつきが大きくなった。

3.2 波作用時および作用後のブロック荷重

a) 平均水平合力の経時変化

図-4に、それぞれ岩着式ケーソンおよびマウンド上 ケーソンに作用する平均水平合力の経時変化を示す。平 均水平合力の算出にあたっては、ロードセルで得られた 時系列データを用い、波の全作用時間(約750波)を30 区間に等分して、各区間で水平合力の平均値を求めた。 ただし、平均値の算出に当たっては、データ区間ごとに 作用する波力が異なるため、波圧計で測定された透過波 力の平均値をデータ区間毎に求めておき、得られた平均 値から差し引くことで補正した。

平均水平合力は、岩着式ケーソンおよびマウンド上 ケーソンのいずれも比較的早い段階(*t*=600(s),約60波 程度)で急激に増加する傾向を示した。しかしながら、 岩着式ケーソンを対象とした場合,*t*=600(s)以後の平均 水平合力はどのケースもほぼ平衡状態を示しており、し かも波作用前(注水後)の*Ks*の大小関係が最後まで維持 される結果が得られた。それに対し、マウンド上のケー

ソンを対象にした場合は、t = 600(s)以後も徐々に平均水 平合力は増加しており、高橋ら(1989)も指摘している ように、波作用後の最終的な K_s がある一定値へ落ち着 く傾向がみられた。

これは,基礎マウンドが一種のバネとして機能し,ケー ソンが振動することによって,消波プロックのかみ合わ せが良くなり,結果として荷重を平面的に分散させる役 割を果たしているものと考えられる.一方,岩着式の場 合は,荷重を分散させる効果が小さいため,実際のひと つひとつのケーソンごとに積載初期のばらつきがそのま ま維持されるものと解釈できる.

このとき,波作用後のブロック荷重は,岩着式ケーソ

表-2 6	系数 Ks
-------	-------

	ケーソン	係数 Ks	
	設置方法	波作用前	波作用後
十字段	岩着式	0.32~0.84	0.64~1.08
半 天映		0.47~0.64	0.80~0.84
高橋ら(1989)		0.28~0.72*	1.44*
廣本ら(1983)	マワント	—	0.63
島田(1984)			0.42~0.66

* 高橋ら (1989) の示した Ks を (1) 式に換算すると Ks=2Ks と なる ンの場合 K_s =0.64~1.08, マウンド上ケーソンの場合 K_s =0.80~0.84 であった.なお,係数 K_s は,既往の研究 成果 (表-2) に示すように,作用する波の大きさや作用 時間,ブロックの形状,積み方などの諸条件によって変 化することに留意することが必要である.なお,H.W.L. と L.W.L.の違いについては,水深差が 50 cm と小さいこ ともあって,有意な差は認められなかった.

b)波作用時のブロック荷重

波が作用したときのブロック荷重は、静水時のそれよ りも小さくなることが既往の研究より明らかとなってい る.これは、波作用時の水位の上昇による浮力の増加に 加え、ケーソンのロッキングによる微小な変位が原因と 考えられている.

図-5 は、岩着式およびマウンド上のケースについて、 それぞれ同じ時間帯における透過波力 F_{FP} 、ブロック荷 重 F_B および水平合力 F_{HT} (= $F_{FP}+F_B$)の時系列波形を 示したものであるが、上述の傾向がそれぞれのケースで 現れている。マウンドのケースでは、波作用時のブロッ ク荷重はほぼゼロに近づいているのに対し、岩着式ケー ソンの場合、下限値は 200 (kN/m) 程度と有意な値を示

しているのが特徴的である.また,透過波力 F_{FP} ,水平合 力 F_{HT} のピークを示す時間はどちらのケースも概ね一 致している.

次に、高橋ら (1989) にならって、透過波力を F_{FP} ,静 水時をゼロとしたときのブロック荷重の変動量を F_{BD} (= $F_B - F_{BS}$) で定義すると、双方の関係は平均的に次式 のように表される.

 $F_{BD} = -\alpha_B F_{FP} \quad \cdots \quad (2)$

この係数 a_{B} は,高橋ら (1989) によってブロック荷重低 減係数と呼ばれており、ブロックの締まり方によって変 化する係数である。ブロックの締まり方が緩く静水時の ブロック荷重が増加段階にある初期においては a_{B} も増 加傾向にあり、十分に締め固められた状態においては a_{B} はほぼ一定の値になる。

そこで、今回の実験結果を基に、 a_B および K_s の関係を 求めて図ー6にプロットした。その結果、波の作用に伴い K_s は経時的に大きくなり、且つ a_B も K_s に比例して大き くなることがわかった。 $a_B > K_s$ は次式のように関係付 けられる。

この関係は岩着式ケーソンだけでなく,基礎マウンド上 のケーソンを対象とした場合にも同様に成り立つ.

3.3 ブロック荷重の評価

ピーク時の透過波力 *F*_{FP} と水平合力 *F*_{HT} の関係を 図-7 に示す。

水平合力 F_{HT} は、ブロック荷重 F_B (= F_{BS} + F_{BD}) と透 過波力 F_{FP} の和として表される。領域 I、領域 II (F_{FP} < F_{FC}) に該当する水平合力は、式(2)の関係を使うと次

式で求められる。

 $F_{HT} = F_{BS} + (1 - \alpha_B) F_{FP} \cdots (4)$

式(4)は、岩着式ケーソンおよびマウンド上ケーソン の両方で成り立つ。なお、領域IIと領域IIIの境界値 F_{Fc} (ブロック荷重が無視できる透過波力の最小値)は、透過 波力 F_{FP} とブロック荷重 F_B の関係を各実験ケース毎に 直線回帰式で求め、 $F_B=0$ とおくことにより求まる。その 結果、 $F_{Fc}=1332.8\sim1862.0$ (kN/m)となった。なお、 図-7に示したケースでは1421.0(kN/m)であった。

しかし, 図-7 において, 基礎マウンド上を対象とした 場合にブロック荷重が無視できる領域III(*F_{FP}*>*F_{FC}*)に

図-9 ブロック荷重の累積度数分布

着目すると,水平合力 F_{HT} は式(5)および(6)のように表わすことができ,岩着式ケーソンとマウンド上ケーソンとで異なる傾向を示した.

岩着式: $F_{HT} = F_{FP} + \beta$ ·······(5)

したがって、岩着式ケーソンの場合、領域IIIにおける ブロック荷重は無視できないものと結論付けられる.

次に、実際の設計にあたっては、ブロック荷重βを定 量的に算定する必要がある。実験結果では、ブロック荷 重のデータにばらつきが見られたため、全実験ケースを 対象に領域IIIに該当するブロック荷重のヒストグラムお よび累積度数分布を作成した。ヒストグラムおよび累積 度数分布はそれぞれ図-8,図-9に示した。

ケーソンに働くブロック荷重は、透過波力の大小に係 わらずランダムにばらついている。マウンド上のケーソ ンの場合、ほぼ0 (kN/m) まわりにばらついているのに 対して、岩着式の場合は 130 (kN/m) 程度を中心にばら つきを見せている。岩着式ケーソンに働くブロック荷重 β は土圧係数に換算すると、平均的に $K_s=0.1$ 程度の荷 重に相当する。

以上の結果より、マウンド上ケーソンの場合はブロッ ク荷重が無視できるが、岩着式ケーソンを対象とする場 合は従来の設計法で無視されてきたブロック荷重を考慮 しなければならない。

4. おわりに

本研究では, 岩着式ケーソンおよび基礎マウンド上の

ケーソンを想定した水理模型実験を行い,岩着式ケーソ ンに作用するブロック荷重特性について考察を行った。 その結果,以下の主要な結論が得られた。

消波ブロックの静水時ブロック荷重は、基礎マウンド上ケーソンに比べて岩着式ケーソンの方がややばらつきが大きくなった。

② 消波ブロックの静荷重は、波の作用直後急激に増加し、岩着式ケーソンを対象とした場合、比較的早い段階(波作用 60 波程度)で平衡状態に落ち着く。しかも波作用前(注水後)のKsの大小関係が最後まで維持される。それに対し、マウンド上のケーソンを対象にした場合は、60 波程度作用させた後も徐々に平均水平合力は増加し、最終的なKsがある一定値へ落ち着く傾向がみられた。

③ これより,基礎マウンドは波作用時にバネとして 働き,ブロック荷重を分散させる役割を果たしているこ とがわかった.

④ 透過波力 F_{FP} とブロック荷重の変動量 F_{BD} には, $F_{BD} = -\alpha_B F_{FP}$ なる関係があり、 α_B は K_S によって変化する傾向が認められた。

⑤ 領域 I, 領域 IIに該当する水平合力 F_{HT} は, 岩着 式ケーソンおよび基礎マウンド上のケーソン同様に, F_{HT}=F_{BS}+(1-a_B)F_{FP} で表される。

⑥ 領域 III に該当する水平合力について、マウンド 上のケーソンの場合、これまでいわれてきたようにブ ロック荷重が無視できることが確認できた。

⑦ しかし,岩着式ケーソンの場合,土圧係数換算で 平均的に *K*s=0.1 程度のブロック荷重を考慮しなけれ ばならない.

参考文献

- 島田真行(1984): 消波ブロック被覆ケーソンに対する作用力の 伝達過程について,第31回海岸工学講演会論文集,pp. 571-575.
- 高橋重雄・谷本勝利・下迫健一郎(1989): 消波ブロック被覆堤 ケーソンの波力と滑動に関する実験的考察,海岸工学論文 集,第36巻, pp. 594-598.
- 田中寛好・阿部宣行・加藤正進(1985): 消波ブロック被覆堤ケー ソンに作用する水平荷重の評価,第32回海岸工学講演会論 文集, pp. 490-494.
- 廣本文泰・西島浩之・今野 茂・木村岩男(1983): 消波ブロッ ク被覆堤に働く波浪時のブロック荷重について,第30回海 岸工学講演会論文集,pp.347-351.