外付け鉄骨耐震補強に用いる厚肉鋼管キーの耐力評価に関する研究

細井 泰行* 竹内 博幸*

要 旨

プレキャスト外壁やALC、押出し成形板を使用した建物では、補強鉄骨と柱や梁の間に外壁パネルが介在するため、外付け耐震補強工法を採用する場合、それらを撤去する必要がある。

そこで、一般に用いられるあと施工アンカーではなく、高剛性・高強度の厚肉鋼管キーを用いて補強鉄骨と建物を接続することにより、この課題の解決を図る。なお、本研究では、本工法の特徴である厚肉鋼管キーのせん 断耐力式を提案し、実大要素実験の結果と比較した。実験結果との比較により、せん断耐力式は安全側の評価 ができることを確認した。

1. はじめに

外付け補強鉄骨による耐震補強を行う場合、補強鉄骨と 既存躯体を一体化させる方法として、在来工法では、補強鉄 骨に頭付きスタッドを溶接し、既存躯体側にあと施工アンカ ーを施工するのが一般的である。また、補強鉄骨と既存躯体 の間の間接接合部には配筋を行い、グラウト材を打設するこ とにより、既存躯体と補強鉄骨を一体化させる。しかし、プレ キャスト外壁や ALC、押出し成形板(以下「外壁パネル」)を 用いた鉄筋コンクリート造及び鉄骨鉄筋コンクリート造の建物 に対して、外側から耐震補強を行うと、既存躯体と間接接合 部の間に外壁パネルの厚み分のすき間が生じるため、図-1に示すように、あと施工アンカーのズレ方向の剛性・耐力が 低くなり、地震力を補強鉄骨に伝達することが困難となる。従 って、外壁パネルを有する建物を外側から補強するには外 壁パネルを撤去する必要がある。

そこで、本工法では、外壁パネルを残したまま耐震補強を 行うために、あと施工アンカーではなく、高剛性・高強度の厚 肉鋼管キーを用いることを提案し、本研究では、厚肉鋼管キ ーのせん断耐力式の提案を行う。

2. 工法の概要

本工法の概要図を図-2に示す。本工法では、外壁パネ ルを有する建物の補強を可能にするために、あと施工アンカ ーの代わりに直径105mm、厚み20mmの厚肉鋼管キー(写真 -1)を用いる。既存躯体と厚肉鋼管キーの間にはエポキシ 樹脂を充填し、外壁パネルにはφ150mmの孔を設け、厚肉鋼 管キーとの間にクリアランスを設ける。また、補強鉄骨には頭 付きスタッドを溶接し、外壁パネルと補強鉄骨の間の間接接 合部のグラウト材の支圧耐力を高めるために、スパイラル筋を 配置する。なお、厚肉鋼管キーの中央に通す仮固定ボルト は、施工用のボルトであり、耐力には寄与しないものとする。

写真-1 厚肉鋼管キー

3. 実験の概要

(1) 試験体

本工法のせん断抵抗要素となる厚肉鋼管キーの剛性やせ ん断耐力を検証するため、実大サイズの要素実験を実施し た。試験体の下部は既存躯体、上部は補強鉄骨を想定し、 接合部を厚肉鋼管キーにより接続する。

試験体を図-3に示し、試験体一覧を表-1に示す。実験 パラメータは①既存躯体側への厚肉鋼管キーの埋込み長、 ②外壁パネルの有無、③外壁パネル厚(スリット幅)、④間接 接合部への厚肉鋼管キー埋込み長とした。

SAシリーズ(試験体 SA-1, SA-2)は、既存躯体と間接接合 部の間に外壁パネルを設けており、既存躯体と外壁パネル の間および、外壁パネルと間接接合部の間には、摩擦軽減 のためのグリースを塗布している。また、外壁パネル部分に は φ 180 の穴を設けており、厚肉鋼管キー(φ 105)とクリアラ ンスを設けている。

一方、SB シリーズ(SB-1~SB-3)は、外壁パネルがせん断耐力や剛性に与える影響を比較するために、外壁パネル部分をスリットとした。なお、既存躯体と間接接合部の接触部にはグリースを塗布している。なお、試験体両側の PC 鋼棒(φ 26)が水平力を負担しないよう、PC 鋼棒の外周には既存躯体との間にクリアランスを設けている。

試験体に使用した材料について、コンクリート及びグラウト 材の材料試験結果を表-2に、鋼材の材料試験結果を表-3に示す。

表-1 試験体一覧

	SAシ	リーズ		SBシリース	<	
	(外壁パイ	トル使用)	(外壁をスリットにより模擬)			
	SA-1	SA-2	SB-1	SB-2	SB-3	
<u>外壁パネル(mm)</u>	120	120	150	120	120	
補強鉄骨側埋込み長(mm)	270	270	270	270	210	
既存躯体側埋込み長(mm)	230	180	180	180	180	

表-2 コンクリート、グラウト材の材料試験結果

		SAシ	リーズ	SBシリーズ		
部位	材料	圧縮強度	ヤング係数	圧縮強度	ヤング係数	
		(N/mm ²)	(kN/mm ²)	(N/mm ²)	(kN/mm ²)	
既存部	コンクリート	23.8	25.8	22.8	28.9	
外壁パネル	コンクリート	24.4	27.0	-	-	
間接接合部	グラウト材	61.8	24.3	65.1	27.3	

表-3 鋼材の材料試験結果

並 (小	镭粘	対智	降伏強周	E(N/mm ²)	引張強度	€(N/mm ²)	伸び	率(%)
HA IAT	11178	10 👳	SA	SB	SA	SB	SA	SB
間接接合部STP	D10	SD295A	352.8	354.1	504.3	497.2	16.7	22.4
間接接合部周辺 筋、既存部STP	D13	SD295A	328.9	365.0	482.6	493.7	21.5	23.7
既存部:主筋	D25	SD345	389.2	376.4	576.6	580.3	22.0	23.7
頭付きスタッド	φ19		323.4	337.2	452.5	475.2	25.6	38.7
厚肉鋼管キー	φ105	STKM13A	323.8	258.8	507.6	447.7	27.7	42.4
PC鋼棒	φ26	C種1号	1,162.5	1,195.8	1,264.9	1,282.4	9.1	12.4
スパイラル筋	φ10	SWRH77B	-	966.2	1,397.0	1,399.8	I	5.8

(2) 載荷方法

要素実験の載荷装置を図ー4に、加力サイクルを表ー4に 示す。加力は油圧ジャッキ(1000kN)による水平方向の正負 交番繰返し載荷とする。水平方向の変位制御で 0.125mm か ら 8mm まで 2 サイクルずつ加力を行い、最終 16mm は 1 サイ クルとした(表-4)。荷重は油圧ジャッキのロードセル、変位 は変位計によって計測した。

既存躯体と補強鉄骨は、補強鉄骨の鉛直方向への回転を 拘束するために PC 鋼棒により拘束し、0.1kN の初期軸力を 導入した。また、補強鉄骨が面外に変形するのを防ぐために 横ずれ防止治具を設置した(図-5)。

4. 摩擦力除去の考え方

既存躯体部と間接接合部の界面には界面の圧縮力によっ て摩擦力が生じるため、ロードセルで計測されたせん断力を そのまま厚肉鋼管キーの負担せん断力とすると、厚肉鋼管キ ーのせん断耐力を過大に評価することになる。

そこで、厚肉鋼管キーの負担せん断力は、ロードセルで計 測されたせん断力から既存躯体部と間接接合部の界面の摩 擦力計算値を除去して算出するものとする。

摩擦力の除去は、既存躯体部と間接接合部の界面から加 力点高さまでの距離によって生じる転倒モーメントと PC 鋼棒 に生じる軸力を考慮し、界面に生じる摩擦力を推定した。 SB-1, 2, 3の摩擦除去の考え方を図-6に示す。 転倒モーメントにより、図ー6の圧縮域に圧縮力、また、中 央の厚肉鋼管キーと右側の PC 鋼棒に引張力が生じ、転倒 モーメントに対する反力として作用するが、厚肉鋼管キーの 方が PC 鋼棒よりも近いため、全ての引張力を厚肉鋼管キー が負担するとして計算した方が、圧縮力が大きくなる。

そこで、安全側の検討を行うために、すべての転倒モーメ ントを、厚肉鋼管キーで負担するものとして、コンクリートの界 面の圧縮力(N)を算定する。

また、転倒モーメントによって生じる軸力(N)とは別に、PC 鋼棒に生じる軸力T1、T2を PC 鋼棒の計測ひずみより求め、 界面にはそれらの合計(T1+T2+N)の圧縮力が生じるもの とする。なお、文献¹⁾を参考として、界面にはグリースを均一 に 0.5mm 程度の厚さで塗布し、摩擦係数を 0.08 とした。

表-4 加力サイクル

変位(mm)	繰返し回数
0.125	2
0.25	2
0.5	2
1.0	2
2.0	2
4.0	2
8.0	2
16.0	1

5. 実験結果

せん断カー変位関係を図-7に示す。各試験体は、いず れも変位が4 mm程度まで剛性低下が見られず、支圧破壊や 厚肉鋼管キー降伏による剛性低下が生じていない。各試験 体に剛性低下を生じた変位4mmの位置を図中に示し、以下、 「剛性低下」時とする。また、剛性低下後も安定した履歴を示 しており、急激な耐力低下は見られなかった。鋼管の曲げ耐 力、支圧耐力の計算値は、後述の表-5による。

また、既存躯体側の埋込み長が 230 mmの SA-1 と、180 mm の SA-2 の最大せん断力の差は 1 割程度である。

なお、SAシリーズの試験体はSBシリーズの試験体よりも剛 性低下後の負担せん断力の増加量が大きい傾向がみられる が、これは、外壁パネルがコンクリートの剥落を抑制する効果 があるためだと考えられる。

次に破壊状況の例として、SB-1の最終破壊状況とSB-3の 変位 4mm 時の状況、最終破壊状況を写真-2に示す。最終 破壊時には、間接接合部(上側)、既存躯体(下側)の両面に かぶりコンクリートの剥離が生じている。なお、間接接合部より

図ー7 せん断力−変位関係

も、既存躯体の方の破壊が先行し、コンクリートの剥離範囲 が大きい。これは、補強鉄骨側の間接接合部はスパイラル筋 により補強しており、また、間接接合部への埋込み長が、既 存躯体への埋込長よりも長いためだと考えられる。また、 SB-3の変形 4mm 時の破壊状況においては、既存躯体面に 軽微なひび割れが生じているが、支圧破壊には至らなかっ た。

なお、SB-1 は、SB-3 と比較して剥落の範囲が少ない。これは、SB-3のスリットの幅が120mm であるのに対して、SB-1は150mm であり、鋼材が変形することにより、コンクリートの損傷の程度が低減されたものと考えられる。

(a) SB-1 試験体(最終破壊状況)

(b) SB-3 試験体(変形 4mm 時の状況)

(c) SB-3 試験体(最終破壊状況)
写真-2 支圧破壊状況

6. 耐力評価(せん断耐力式)

厚肉鋼管キーの支圧応力度によって決まる耐力算定用の 力学モデルを図-8に示す。せん断耐力の算定に関しては、(2) 厚肉鋼管キー断面のせん断耐力(Qs) 文献 2)及び文献 3)で示されている埋込み柱脚設計用力学モ デルを参考とした。

厚肉鋼管キーの設計用せん断耐力(O)は、(1)式による。

厚肉鋼管キー曲げによって決まるせん断耐力(10b 20b)、 厚肉鋼管キーのせん断力によって決まるせん断耐力(Os)、 グラウト材の支圧力によって決まるせん断耐力(1Obear 2Obear) のうち、最も小さいものを厚肉鋼管キーの設計用せん断耐力 とする。

 $Q=\min({}_{1}Q \text{ b}, {}_{2}Q \text{ b}, Q \text{ s}, {}_{1}Q \text{ bear}, {}_{2}Q \text{ bear})$ (1)

1Qb: 厚肉鋼管キーの曲げによるせん断耐力(既存躯体側) 20b:厚肉鋼管キーの曲げによるせん断耐力(補強鉄骨側) Qs:厚肉鋼管キーのせん断耐力

1Qbear:既存躯体埋込み部の支圧力によるせん断耐力 2Qbear:間接接合部埋込み部の支圧力によるせん断耐力

(1) 厚肉鋼管キーの曲げによるせん断耐力(Q_b)

既存躯体側のせん断耐力(1Qb)は(2)式、補強鉄骨側の せん断耐力(2Qb)は(3)式による。なお、コンクリートの設計基 準強度に対する支圧強度の強度上昇倍率(β)はせん断耐 力計算値が実験値に対して安全側となるように2.2とした。

$1Q_{b}=M_{y}/h'$	(2)
${}_{2}Q_{b}=M_{y}/h$ ''	(3)
$h' = h + (d_1 - x)/4$	(4)
$x=1Q_{\text{bear}}/(F_{\text{B}} \cdot D_1)$	(5)
$h'' = h + d_2/6$	(6)

ここに、

- My:厚肉鋼管キーの降伏曲げモーメント(断面係数×短 期許容応力度×1.1)
- h':外壁パネル厚みの中心から既存躯体側コンクリート 内部で厚肉鋼管キーの曲げモーメントが最大になる 点までの距離
- h'':外壁パネルの厚みの中心から間接接合部への厚肉 鋼管キー埋込み長の1/6の距離
- d1:既存躯体への埋込み長
- d2:間接接合部への埋込み長
- h:外壁パネルの厚みの1/2
- D1:既存躯体側のコンクリートの孔径
- $F_{\rm B}$:既存躯体側のコンクリートの支圧強度(= $\beta \times F_{\rm C}$)
- Fc:既存躯体側のコンクリートの設計基準強度

β:FB、gFCB設定時の強度上昇倍率(=2.2)

厚肉鋼管キー断面のせん断耐力(Qs)は(7)式による。 $Q_{\rm s}=(1.1 \cdot \tau \cdot A) / \kappa$ (7)

ここに、

- A:厚肉鋼管キーの断面積
- τ:厚肉鋼管キーの短期許容せん断応力度
- κ:厚肉鋼管キーの最大せん断応力度と平均せん断応 力度との比(κ=1.93)
- (3) 支圧応力度によって決まるせん断耐力(Q_{bear})

既存躯体側埋込み部の支圧応力度によるせん断耐力 (1Qbear)は(8)式、間接接合部への埋込み部の支圧応力度に よるせん断耐力($_2Q_{\text{bear}}$)は(9)式による。

$_1Q_{\text{bear}}=-2H \cdot E + \sqrt{4H^2E^2 + F^2}$	(8)
${}_{2}Q_{\text{bear}} = 2/3 \cdot {}_{g}F_{\text{CB}} \cdot D_{2} \cdot d_{2}/(1+6(h+d_{2}/2)/d_{2})$	(9)

ここに、	
$H=h+d_{1}/2$	(10)
$E=F_{\rm B} \cdot D_1$	(11)
$F = F_{\rm B} \cdot D_1 \cdot d_1$	(12)
D2:厚肉鋼管キーの径	
gFcB:間接接合部のグラウト材の支圧強	度
$(_{\mathrm{g}}F_{\mathrm{CB}}=\beta \cdot_{\mathrm{g}}F_{\mathrm{C}})$	
gFc:間接接合部のグラウト材の設計基準	善強度

固定柱脚設計用力学モデルを図-9に示す。文献²⁾では、 この力学モデルによる評価式が以下の式で示されている。

水平方向の力のつり合い: $Q_{p}=F_{B}\cdot D\cdot x$

(13)

モーメントのつり合い: $F_{\rm B} \cdot {\rm D} \cdot \{(d_1 - x)/2\} \cdot \{x + (d_1 - x)/2\} = Q_{\rm p} \cdot (h + d_1/2)$ (14)

上の2式より、 $Q_{\rm p}^2 + 4 Q_{\rm p}(h + d_1/2)F_{\rm B} \cdot {\rm D} \cdot (F_{\rm B} \cdot {\rm D} \cdot d_1)^2 = 0$ (15)

ここで、H、E、F を用いると(10)、(11)、(12)式とすると、(17) 式を求めることができる。

	Q_{p}^{2} +4 $H \cdot E \cdot Q_{p}$ -F ² =0	(16)
. :	$Q_{\rm p} = -2H \cdot E + \sqrt{4H^2E^2 + F^2}$	(17)

カ学モデルの図-8において、既存躯体側のコンクリート の応力分布は、終局状態を想定した矩形の応力分布を想定 しており、(8)式の適用で、(17)式を参考とした。

増設側は、支圧応力に対して短期許容応力度以下になる よう、三角形の応力分布を想定しており、同様に水平方向の つり合いとモーメントのつり合いにより、(9)式を求めた。

なお、図-8では、既存側のコンクリート強度を 18N/mm²、 間接接合部のグラウト材の設計基準強度を 40N/mm²、外壁 パネルの厚みを 120mm として、応力等計算値を示す。

7. 実験結果と計算値の比較

実験結果と計算値の比較を表-5に示す。計算値の算定 には表-2、表-3の材料試験結果を用いる。剛性低下時の せん断力の実験値(eQcy)は、外壁パネルのある SA-2 では 469.6kN である。一方、外壁パネルがない SB-2 は eQcy が 411.7kN であり、外壁パネルの影響でせん断力の実験値が 15%程度増加している。また、スリット幅が 150mm の SB-1 は eQcy が 330.3kN であり、スリット幅が 120mm の SB-2 よりもせ ん断力の実験値が 2 割程度減少しており、スリット幅が広がる ことでせん断耐力が減少することがわかる。また、間接接合

項目		SA-1	SA-2	SB-1	SB-2	SB-3
	1Qbear	345.4	300.2	264.8	287.6	287.6
	$_2Q_{\text{bear}}$	481.8	481.8	477.7	507.5	368.4
計算値	$_1Q_b$	328.2	339.3	231.2	271.2	271.2
(kN)	$_2Q_b$	299.0	299.0	209.1	239.0	264.1
	Qs	517.3	517.3	413.5	413.5	413.5
	Q _{min}	299.0	299.0	209.1	239.0	264.1
剛性低下時せん断力 (kN) _e Q _{cv}		472.4	469.6	330.3	411.7	408.9
最大せん断力 (kN) _e Q _{max}			589.0	446.0	477.0	474.0
計算値と剛性低下時	1.58	1.57	1.58	1.72	1.55	
計算値と最大荷重時の実験値の比較 _e Q _{max} / Q _{min}			1.97	2.13	2.00	1.79

表-5 実験結果および計算値との比較

部への埋込み長が 270mm の SB-2 に対して、埋込み長さが 210mm の SB-3 は eQcy が 408.9kN であり、せん断耐力の減 少が見られるが、その減少の割合は少ない。

最大せん断力の実験値 ($_{e}Q_{max}$)は、計算値 (Q_{min})に対す る割合が1.79~2.14であり、いずれの試験体も実験結果を安 全側に評価できた。また、剛性低下時のせん断力の実験値 ($_{e}Q_{cy}$)においても、計算値(Q_{min})に対する割合が1.55~1.72 であり、せん断耐力の計算値に対して厚肉鋼管キーは剛性 低下を生じていない。

8. まとめ

厚肉鋼管キーの要素実験の結果を報告し、せん断耐力式 を提案した。本実験で得られた知見は以下の通りである。

- (1) 高強度・高剛性の厚肉鋼管キーは、変形4mm程度まで コンクリートの支圧破壊や厚肉鋼管キーの降伏に起因する 剛性低下は生じなかった。
- (2) 剛性低下時のせん断力の実験値は、提案する厚肉鋼 管キーのせん断耐力式の計算値に対して 1.55~1.72 倍で あり、せん断耐力を安全に評価することができる。

なお、本研究は、(株)森林経済工学研究所、(株)コンステ ックとともに行った。また、平成 30 年 12 月に一般財団法人日 本建築総合試験所にて建築技術性能証明(GBRC 性能証 明 第 18-17)を取得した。

【参考文献】

- 中野克彦, 松崎育弘:プレキャスト RC 部材接合面にお けるせん断抵抗要素の耐力累加方法, 日本建築学会構 造系 論文集 第 550 号, pp.151-158, 2001.12.
- 2) (一社)日本建築学会 近畿支部鉄骨構造部会:新しい 鋼構造に向かって(固定柱脚の考え方), 1988.11.
- 3) (一社)日本建築学会:鋼構造接合部設計指針, 2001.11.