佐賀関第一大煙突解体コンクリートによるサンプリング調査

竹内	博幸*	内田	直利**
井上	元***	池田	泰敏**

要旨

竣工時(1916年)高さ167.63mと世界一を誇った「佐賀関第一大煙突」¹⁾解体工事にあたり、100年近く経過 した鉄筋コンクリート構造物が、厳しい環境下に長期間置かれた結果、どの程度の劣化状態にあるか、また、コ ンクリート、鉄筋がどのような状態にあるのか、それは現在の鉄筋コンクリート構造物と比較してどのように違っ ているのか、などを調査する目的で、解体片からのサンプリングによるコンクリートおよび鉄筋に関する各種の 関連試験を行った。その結果、コンクリートの圧縮強度はばらつきがあるものの、概ね 30N/mm² 前後であり、鉄 筋の腐食もそれほど見られず、強度性状も現在の鉄筋に近い状態であった。

1. はじめに

「佐賀関第一大煙突」解体工事にあたり、100年近く経過し た鉄筋コンクリート構造物が、厳しい環境下に長期間置かれ た結果、どの程度の劣化状態にあるのか、コンクリート、鉄筋 がどのような状態にあるのか、それは現在のそれらと比較して どのように違っているのか、などを調査する目的で、解体片か らのサンプリングによるコンクリートおよび鉄筋に関する各種 関連試験を行った。なお、試験対象が高所から落下した解体 片であるため、落下時に脆弱な部分が既に失われ、供試体 が落下による衝撃に耐えた部分となる可能性がある。したが って、本報告の試験結果は、当該構造物の脆弱部を含めた 評価結果になっていない可能性があることをあらかじめ言及 しておく。

2. 実施方法

2.1 概要

「第一大煙突解体工事」の本体解体工事を進めながら、発 生する解体片を一定間隔(@30m)で所要分サンプリングし たものを確保しておき、後日所定の各種試験を行った。サン

表-1 佐賀関第一大煙突の諸元

	摘要
用途	銅製錬の排煙処理
	主筋:□28.6~□12.7*1]
配 筋	@120(下部)~@350(上部)
	せん断補強筋:□19@150
ライニング	GL+45.72mまで2重壁(内壁:t=120)
所在地	海から約1km、標高 126.49m
注]*1]□:;	角型鋼(米国製)

*技術研究所 建築技術開発部 **九州支店 ***土木営業本部 プリングの概要を図-1に、供用時の煙突の俯瞰を写真-1 に示す。また、建造物としての諸元を表-1に示す。なお、解 体は、煙突頂部まで届くクレーンのジブの先端に破砕装置を 取り付けて上部から始めている。したがって、破砕された解体 片は、当該高さから地面に直接落下することになる。

2.2 実施項目

(1) コンクリート

解体片の中、コンクリートに関して実施した試験項目と方 法について表-2に示す。

(2) 鉄筋

解体片の中、鉄筋に関して実施した試験項目と方法につ いて表-3に示す。

(3) その他

解体片の中、骨材と打継ぎ部に関して実施した試験項目と 方法について表-4に示す。

調査項目	試験項目	試験方法	摘要	頻度·回数
解体片の状態	劣化状態	目視観察	変状が認められる場合	1回@30m
	圧縮強度	JIS A 1107	コア φ 100×200、解体片貫通採取 ^{1]}	×3 @30m+煙道
コンクリート	静弹性係数	JIS A 1149	コンプレッソメータ, 圧縮試験時	×3 @30m+煙道
強度性状	動弾性係数	JIS A 1127	コア φ 100×3	×3 @30m+煙道
	[反発度]2]	JIS A 1155(参考)	リバウンドハンマー	×1 @30m+煙道
	組成分析	配合推定	セメント協会法 3]	×2 @30m+煙道
	組成分析	粉末X線回折	結晶物質の同定・定量	×1 @30m+煙道
コンクリート	細孔径分布	水銀圧入法	試料:モルタル 2.5~5 mm	×1 @30m+煙道
术且方义。	EPMA ^{4]}	定量分析	分析対象:S, Cl	×1 @30m+煙道
	文献による確認	関連文献参考	煙突 C:S:G=1:2:4	煙突部,煙道部
	中性化深さ	JIS A 1152	外表コア割裂 ⇒ フェノールフタレイン	×3 @30m+煙道
耐久性	塩化物量	JIS A 1154	全塩分量試験:壁厚方向@20 mm	×1 @30m+煙道
	鉄筋発錆状態	目視観察	腐食段階判定(I~IV)	×3 @30m+煙道

表-2 コンクリート関連試験項目

注]1] コア供試体は、解体片から貫通採取し、成形する。内外方向が分かる場合は外周側から採取する。 2] コア採取の解体片が12kgを超え、安定した状態で打撃できる平滑な面を有した場合に実施する。

3] 石灰系骨材を含む場合は、「グルコン酸ナトリウムを用いる方法」による。 4] EPMA(電子線マイクロアナライザー)は、イオウ(S)と塩素(Cl)について定量分析する。

表一3 鉄筋関連試験項

調査項目	試験項目	試験方法	摘要	頻度·回数
鉄筋の	引張強度	JIS Z 2241	主筋、せん断補強筋	×3 @30m+煙道
強度性状	静弹性係数	JIS Z 2241 + α	ワイヤレス・ストレインゲージ	×3 @30m+煙道
鉄筋の付着	付着強度	引抜き試験	万能試験機+球座	×3 @30m
	腐食(発錆)状態	目視観察	腐食段階判定(I~Ⅳ)	×3 @30m+煙道
鉄筋の腐食	腐食面積	画像処理	腐食面積率の算定	×3 @30m+煙道
	腐食量	洗い試験 JCI-SC1	クエン酸溶液処理による質量・ 断面積の低減量	×3 @30m+煙道
鉄筋の組成	組成分析	粉末X線回折	結晶物質の同定・定量	×3 @30m+煙道

表-4 その他試験項目

調査項目	試験項目	試験方法	摘要	頻度·回数
串お	各個·混合状態	目視観察	破砕·欠損、分散状態	×3 @30m+煙道
同构	岩種特定	顕微鏡観察	鉱物種による識別	×1 @30m+煙道
打継ぎ	近傍の状態	目視観察	打継ぎ面・近傍の状態	×3 @30m+煙道
	中性化深さ・範囲	JIS A 1152	半割コア⇒フェノールフタレイン	×3 @30m+煙道
	鉄筋発錆状態	目視観察	腐食段階判定(I~IV)	×3 @30m+煙道

3. コンクリート関連試験の実施結果

各試験の結果は、紙面の都合上、主要な項目についての み報告する。

3.1 コンクリート強度性状

表-5に、コンクリートの力学性状に関する各試験結果に ついて並列して示す。なお、表-5の試験結果は、試験値の 平均と標準偏差(()内の数値)を示している。

各高さ位置におけるコア圧縮強度は、煙道部を除いて概 ね 30N/mm²近傍と普通強度の範囲であった。この傾向は、コ ア供試体による静弾性係数や動弾性係数も同様であり、試 験値の分散傾向からみると、圧縮強度よりもやや安定的であ った。

一方で、煙道部に著しい高強度領域の試験値が見られた のは、配合、施工条件や環境・養生条件などが複合的に作 用して、局部的に発現したものと考えられる。

拉肋				静弾	性係数	動弾性係数 ^{2]}		
(休 城 城 城 城	No	(N/1	mm²)	(kN/	mm²)	(kN/	mm²)	
ווושי		各値	平均 3]	各値	平均 3]	各値	平均 3]	
	1	40.3		27.1		32.0		
	2	65.3	48.1 (12.2)	40.3	30.7 (6.9)	40.1	34.1	
	3	38.6	(12.2)	24.6	(0.0)	30.3	(4.3)	
	1	27.0		23.0		27.8		
煙道 2	2	31.6	30.3 (2 4)	20.0	22.7 (21)	25.6	27.7 (17)	
-	3	32.3	(2.4)	25.0	(2.1)	29.7	(1.77	
煙突	1	25.3		18.7		25.4		
0~	2	36.3	28.3 (5.7)	23.5	20.7 (2.0)	31.3	27.3 (2.8)	
30m	3	23.3	(017)	20.0		25.2	(2.0)	
煙突	1	34.8		23.7	20.9 (6.2)	23.0	07.4	
30~ 60m	2	35.5	30.9 (6.0)	26.8		31.1	27.4 (3.4)	
	3	22.4	(0.0)	12.3	(0.2)	28.2		
煙突	1	25.5		22.7	21.1	28.5	27.2 (1.6)	
60~	2	27.1	24.9 (2.1)	21.1		28.2		
90m	3	22.0	(19.6	()	24.9		
煙突	1	28.3		21.7		30.4		
90~	2	44.3	33.5 (7.6)	29.4	25.4 (3.1)	34.5	31.6 (2.0)	
120m	3	28.0	(),	25.2	(011)	30.0		
煙突	1	33.5		25.5		30.2		
120 ~	2	40.8	34.9 (4 4)	28.3	26.0 (1.7)	31.7	30.0 (1.5)	
150m	3	30.4	()	24.3	(,	28.1	(110)	
煙突	1	[26.8]	[a a a]	-		-		
150m	2	[27.5]	[28.8] (2.4)	-	-	-	—	
~	3	[32.2]	、 <u> </u>	—		—		

表-5 コンクリートの圧縮強度関連試験結果

また、煙突部 60~90mの圧縮強度が相対的にやや低めで はあるが、推定される当時の設計基準強度(12~18N/mm²) を十分に満足しており、総体的には良好な材料・施工であっ たと推察される。

3.2 コンクリート組成

表-6に、配合推定結果と配合に関連すると考えられる各 種試験結果を並列して比較した。なお、煙道と煙突部の設計 配合は異なり、後者は、セメント:砂:砂利=1:2:4 であった。 また、表中の平均と標準偏差は、煙突部の試験値について 算定されている。

配合推定による水セメント比は、煙突部 30~60mでやや低い値が見られ、煙突部 120~150mではやや高い値が見られたが、それ以外は煙突部の平均に近い範囲であった。

同位置の2試料間に相応の差違が見られるのは、配合推 定試験自体に含まれる誤差要因に加えて、当時骨材の水量 管理が十分でなかったこと、温度・湿度などの環境因子によ る水量調整が確立されていなかったことなどが、影響を及ぼ したものと考えられる。

表-6 配合推定と関連試験結果の比較

採取	No	単位 (kg/	Σ量 m ³)	W/C	圧縮 (N/n	強度 nm ²)	平 均 細孔直径	
场所		セメント	水	(%)	各値	平均	(µ m)	
煙道	1	330	167	50.6	40.3	40.1	2.35 × 10 ⁻²	
1	2	309	168	54.3	65.3 38.6	40.1	2.59 × 10 ⁻²	
煙道	1	313	180	57.4	27.0	20.2	1.44 × 10 ⁻²	
2	2	316	193	60.9	31.0	30.3	1.51 × 10 ⁻²	
煙突	1	356	194	54.0	25.3	00.0	5.66 × 10 ⁻²	
0∼ 30m	2	332	185	58.6	30.3 23.3	28.3	6.81 × 10 ⁻²	
煙突	1	342	196	54.1	34.8	20.0	1.15 × 10⁻¹	
30∼ 60m	2	2 456 194	194	39.6	35.5 22.4	30.9	8.25 × 10 ⁻²	
煙突	1	360	176	54.5	25.5	24.0	1.28 × 10 ⁻²	
60∼ 90m	2	394	191	49.4	27.1	24.9	1.39 × 10 ⁻²	
煙突	1	375	181	48.0	28.3	22 F	1.57 × 10 ⁻²	
90∼ 120m	2	374	160	47.0	44.3 28.0	33.0	1.62 × 10 ⁻²	
煙突 120	1	322	168	59.4	33.5	20.0	2.24 × 10 ⁻²	
~ 150m	2	271	180	74.8	40.8 30.4	30.0	2.61 × 10 ⁻²	
煙突	1	405	192	44.6	26.8	20.0	2.72 × 10 ⁻²	
~	2	323	194	49.6	32.2	20.0	2.35 × 10 ⁻²	
平均	1]	359	184	52.8	30).2	3.92 × 10 ⁻²	
(標準偏差)		(45)	(11)	(8.6)	(6.1)		(3.10 × 10 ⁻²)	

注]1][]内の数字は、JISA 1107 による補正後の強度値。

2] 動弾性係数は、JIS A 1127 による縦振動。

3]()内の数字は標準偏差を示す。

注]1] 平均と標準偏差は、煙突部の試験値により算定。

煙突部 0~60mにおける細孔平均直径が他より突出して 大きいため、全体的にコア圧縮強度と細孔平均直径の関係 は明らかではないが、その2データを除外すると、細孔平均 直径は圧縮強度に関わらず、ほぼ一定範囲に止まることが 分かる。これより、耐久性の指標である細孔径は、強度値と 明確な相関は見られないが、ある一定範囲内の強度値に対 しては、ほぼ近似した平均径を示すことが類推される。

また、EPMA 分析の結果、分析対象とした成分の分布状態 は以下の通りである。なお、EPMA 分析は、排煙による影響と 飛来塩分量を確認することを主な目的としたが、煙突部の内 側と推察される変色部分を対象として行った。

・S(イオウ):全般的に対象面全体に薄く分布している場合 が多いが、分布状態にやや差違が見られる。

・Cl(塩素):低所部ではほとんど分布は見られないが、高所 部では薄く分布している。

S は、排煙にも含まれる成分であり、試料の採取位置や高 さによる分布の違いは明確には表れていない。

Cl は、塩化物量が高所部に移行するに従い多くなってい たことから、塩化物量の分布傾向に概ね合致している。

3.3 コンクリートの耐久性

表-6に、コンクリートの耐久性に関連する中性化および塩 化物量の各試験結果を一括して示す。なお、両試験は、 別々に採取したコア供試体を用いて実施している。前者に ついては、煙突部表面から測定できるように供試体を設定し たが、後者については供試体の内外は明確ではない。

中性化深さについては、煙突部 0~30mを除いて、いずれ も極めて小さい試験値を示している。同 0~30mの箇所につ いても中性化深さは最大 50mm であり、耐用期間や周辺環 境を考慮すると決して大きな数値ではない。

一方、塩化物量は、試験値を単位容積あたりに換算する と、いずれも建築における基準値(0.30kg/m³以下)を大きく 超え、煙突部 60m以上の部分については、緩和規定値 (0.60kg/m³)をもはるかに上回る塩化物量となった。

コンクリートの耐久性状に深く関係する両試験結果の間に、 このような違いが表出したのは、当該案件が沿岸部近傍に位 置していたため、ほぼ全周方向から飛来塩分の影響を長期 間にわたって受けていたのに対し、中性化の発生要因であ る二酸化炭素濃度は、沿岸部近傍であっても、内陸部と大き く変わらないため、また、細孔径分布試験結果などからも伺 えるように、約100年前の施工とは言え、比較的緻密なコンク リート組成であることからも、中性化の進行については、地上 部と同様に比較的よく抑制されていたものと考えられる。

4. 鉄筋関連試験の実施結果

4.1 引張試験

表-7に、各試験結果について、同時期に建設された大

試験	体		中性化液	衆さ(mn	n)1]	塩化物	量(w/w%)	塩化
場所·位	之置	内外	平均	全体	最大	最大2]	平均 3]	初里 ³³ (kg/m ³)
	1		0		0			
煙道 1	2	外側	0	3	1	[2-4]	0.007	0.387
T	3	(A)	10		15	0.010	[0.003]	
	1		1		5			
煙道 2	2	外側	0	1	0	[0-2]	0.005	0.469
2 3	3	1701	0		2	0.02	[0.007]	
_	1		45		48	Fo. (1		
0∼ 30m	2	外側	46	39	50	[2-4] 0.039	0.018	0.908
00111	3	171	25		28	0.000	[0.005]	
30~	$_{30} \sim 1$		30	10	35	[10-12]		
60m	2	内側	0		0		0.016	0.836
内側	3	171	0		0	0.035	[0.011]	
	1		12		15	F 4 07		
60∼ 90m	2	内側	13	8	12	[4-6] 0.139	0.048	3.235
0 0 m	3		0		0	0.105	[0.010]	
	1	-L-	5		6	[4 a]	0.045	
90∼ 120m	2	例	6	4	7	[4-6] 0.139	0.045	3.262
	3		0		0	01100	[0.000]	
100	1	<u>н</u>	0		0	[4 c]	0.040	
120~ 150m	2	例	0	2	0	0.124	0.042	3.024
	3		5		6			
>	1	内	0		0	[9_4]	0.026	
\leq	2	17	0	2	0	[2-4]	0.036	3.090

表-6 耐久性関連試験結果

注]1] 解体片の平面位置により対象が内側あるいは外側となる。]内は最大値を示した深さ位置(cm)を示す。 2] [

3] []内は標準偏差を示す。

5

側

3

150m

4] 塩化物量最大値に配合推定による単位質量を乗じて算出。

6

0.129

[0.036]

規模な RC 造煙突(日立大煙突)²⁾の試験値および現在の IIS 規格と比較したものを示す。佐賀関大煙突では、鉄筋は米国 製の角型鋼(□15.8~□28.8)を用いている。ただし、煙道部 や基礎部では、国産の丸鋼を用いた。なお、日立大煙突は、 佐賀関大煙突の供用 2 年前に茨城県日立市に建造された RC 造の高さ155.8mの大煙突で、佐賀関が内足場方式で施 工されたのに対し、外部総足場方式で、外部に揚重設備を 設けて施工された。いずれも1年を要さない短工期で供用に 到っている。²⁾

表-7より、応力度については、降伏点、最大値のいずれ もが JIS 規格値を概ね超えており、日立大煙突のそれらに比 較しても大きく超えている。また、降伏点応力度より最大応力 度の方が、同規格値を上回る度合いが大きいため、(降伏応 カ/最大応力)は JIS 規格や日立大煙突のそれより小さくな っている。

鉄筋	相枚	鉄筋径	応力度(N/mm ²) ^{2]}		降伏	静弾性	破断 伸び ^{4]}	ひずみ 5]	備 去
♪A ・径	人工日	(mm)	降伏点	最大	最大	(kN/mm ²)	(%)	(%)	11用 つう
□15.8		15.91 (0.08)	359.8 (29.3)	633.4 (18.3)	0.568	180.1 (10.1)	17.14 (2.85)	19.34	米国製
□19.6		19.04 (0.51)	299.4 (6.1)	566.9 (23.0)	0.528	170.0 (10.6)	13.42 (2.93)	18.87	"
□22.3		22.45 (0.19)	350.4 (10.1)	590.7 (11.1)	0.594	189.7 (6.9)	17.55 (2.74)	17.24	"
□26.6		25.87 (0.18)	318.7 (11.1)	591.1 (11.2)	0.539	189.0 (2.2)	22.62 (0.39)	20.80	"
□28.8		29.02 (0.18)	294.1 (10.8)	591.1 (11.2)	0.520	176.0 (14.5)	20.88 (5.76	19.46	"
φ31.9		31.80 (0.08)	312.7 (18.1)	470.8 (41.7)	0.664	208.0 (0)	27.94 (5.84)	22.88	国産
日立 煙突 ^{1]}		D11.1~ D28.6	274	359	0.763	169	1	_	建築学会 大会論文
JIS	SD205	16 以下	≧295	≧440	0.670	—	≧16	—	
規格	30293	16 超	≧295	≧440	0.670	—	≧17	_	

表-7 引張試験結果比較一覧

注]1]日本鉱業・日立大煙突(1914年竣工)に関する建築学会大会論文(1996年)より。

2] ひずみ 0.2%から約 0.1%の弾性係数を用いた平行線から算定している降伏点強度による。

3] ひずみ 0~0.1%における直線の傾き。 4] 試験区間内での破断における試験区間内の伸び。

5] 測定における最大ひずみの平均値。 ※()内は各試験値の標準偏差を示す。

静弾性係数は、通常の現代における鉄筋のそれよりもやや 小さいものの、日立煙突で使用されていた鉄筋の静弾性係 数より全般的に大きくなっている。

また、破断伸びは、□19.6などはJIS規格値を下回っている が、引張試験時に測定されたひずみ値は、いずれも 170000 µ(=17%)を超えていることから、潜在的には伸び能力はそ れほど低下していないものと考えられる。

4.2 付着試験

表-8に、今回の試験結果と予測値を比較したものを示す。 同表中の網がけ部分は、最大荷重値を下回る耐力値を示し ている。また、図-2に、試験体ごとの引張荷重と変位の関係 を示す。

採取した試験体コンクリートと鉄筋の界面にひび割れが発 生し、鉄筋が完全に抜け出した試験体3を除き、いずれの試

	鉄筋	関連	測定	定値	ē 耐力值(kN)			
試験体 No.	形状∙径 (mm) ^{1〕}	付着長 (mm) ^{2]}	最大 荷重 (kN)	最大時 変位 (mm)	降伏 Try	引張 Tru	付着 Tbu ^{3]}	破壊 モード
1	□10.0	100	38.61	4.71	36.27	63.85	27.55	付着破壊
2	□16.6	172	57.07	2.13	99.20	174.63	70.12	付着破壊
3	ϕ 16.0	148	6.67	25.08	62.98	94.82	51.15	界面割裂
4	□ 8.3	182	21.23	0.02	24.68	43.45	37.66	溶接部切断
5	9.6	204	38.69	0.03	33.39	58.78	53.81	溶接部切断
6	φ14.2	152	60.21	0.13	49.50	74.53	48.61	付着破壊
7	□10.1	168	27.64	0.01	36.59	64.42	66.97	溶接部切断
8	□ 9.5	149	37.99	0.04	32.24	56.75	69.42	溶接部切断
9	9.8	154	37.49	0.00	34.54	60.81	85.42	溶接部切断
10	□16.1	150	83.92	0.45	92.97	163.67	69.15	溶接部切断
11	□16.2	167	72.77	2.89	94.09	165.63	67.21	付着破壊

表-8 鉄筋付着試験結果

注]1]鉄筋径は、2箇所の実測値の平均 2]付着長さは、鉄筋埋込み部の実測値

3] 付着強度は、建設省告示 1450 号による。付着面積は,鉄筋径の実測値と付着長さの実測値による。

※ 網がけ部分は、最大荷重を下回る耐力値を示す。

験体も比較的少ない鉄筋の引抜け量にとどまり、図-2に示 すように、荷重低下後も鉄筋が大きく変位するような動きは見 られなかった。

いずれにしろ、試験体採取元が、高所における解体片で、 落下による衝撃を受けた後であっても、鉄筋は埋込み長さや コンクリート強度に合わせて計算で示されるのと同程度以上 の抵抗値を示し、その現象は付着長 10d 前後(例えば、試験 体 10 は付着長 9.3d、同 11 は 10.3d、d:鉄筋径)でも比較的 安定して見られた。

なお、別途調査した鉄筋の発錆状態については、高さが

図-2 付着試験における荷重と変位の関係

表-9 粉末 X 線回折結果

種粨	摘更 相格			wt	.%		mol.%				供去
俚狽	個安	况伯	Fe	Mn	0	Si	Fe	Mn	0	Si	頒石
□26.6	米国製	—	97.378	1.266	1.356	—	94.177	1.244	4.579	—	煙突部
D13	日本製	SD295B	96.094	1.616	2.034	0.256	91.218	1.559	6.739	0.484	比較用

120mを超えたあたりから部分的に錆が見られ、150m以上 で浮き錆がやや目立つ程度であった。

4.3 組成分析

各鉄筋の粉末 X線回折結果から質量比とmol.比を抽出し たものを表-9に示す。

これらより、FeとMnの量は現代の鉄筋と比較してもそれほ ど違わないが、Siが抽出されず、Oの量がやや少ない傾向に ある。なお、今回の回折では、C(炭素)が抽出されなかった ため、解体片から別に採取された鉄筋について、燃焼ー赤 外線吸収法により C 量を分析した結果、0.37~0.48 wt.%で あった。また、日立大煙突における鉄筋の C 量は、異形 0.050 wt.%、丸鋼 0.07 wt.% (いずれも米国製)²⁾、現在の鉄 筋の C 量は、0.27 wt.%³⁾であることから、佐賀関大煙突の鉄 筋がいずれをも上回っていることが分かる。

5. まとめー現代との比較

(1) コンクリート

各高さ位置におけるコア圧縮強度は、煙道部を除いて概ね 30N/mm²近傍であり、現代においても普通強度の範囲であっ た。この傾向は、コア供試体による静弾性係数や動弾性係 数も同様であり、試験値の分散傾向からみると、圧縮強度よ りもやや安定的であった。中性化深さは、いずれも小さい値 であったのに対し、塩化物量は、煙突部 60m以上の部分は、 1) 日本鉱業株式会社五十年史編集委員会編:五十年の 土木の腐食限界値をはるかに上回る試験結果となった。こ れは、当該案件が、ほぼ全周方向から飛来塩分の影響を長 期間にわたって受けていたのに対し、中性化の発生要因で ある二酸化炭素濃度は、内陸部と大きく変わらないため、約 100年前の施工とは言え、比較的緻密なコンクリート組成で

あることからも、中性化の進行については、比較的よく抑制さ れていたと考えられる。総体的には、現代であっても良好な 材料・施工であると評価できる。

(2) 鉄筋

現行のJIS 規格や同時期に建設された RC 造煙突(日立 大煙突)と比較については以下の通り。

応力度については、降伏点、最大値とも、いずれも JIS 規格 値を超えており、日立煙突に比較しても大きく超えている。ま た、降伏点応力度より最大応力度の方が、同規格値を上回 る度合いが大きいため、(降伏応力/最大応力)は JIS 規格 や日立煙突のそれより大幅に小さくなっている。静弾性係数 は、通常の現代における鉄筋のそれよりもやや小さいものの、 日立煙突で使用されていた鉄筋の静弾性係数より全般的に 大きくなっている。破断伸びは、JIS 規格値を下回っている種 類もあるが、引張試験時に測定されたひずみ値は、いずれも 170000 µ (=17%)を超えていることから、潜在的な伸び能 力はそれほど低下していないものと考えられる。引抜き試験 の結果、落下による衝撃を受けた後であっても、鉄筋は計算 で示されるのと同程度以上の付着力を示し、その現象は付 着長 10d 前後でも比較的安定して見られた。

【参考文献】

- あゆみ、pp.51-59、1957
- 2) 上野謙之助、永田英敏、五関直一、下川祐一:日本建 築学会大会学術講演集(近畿)、1996年9月
- 日本規格協会: JIS G 3112 鉄筋コンクリート用棒鋼、 pp.2, 2010